Skip to main content
Log in

Signal-to-noise ratio improvement of swept-tone-generated transient otoacoustic emissions

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this study, we utilized the swept-tone (ST) deconvolution method for comparing the signal-to-noise ratio (SNR) characteristics of ST otoacoustic emissions (OAE) to conventionally acquired click, or transient-evoked (TE), OAE. We generated a hearing-level equalized (HLeq) ST stimulus based on normative loudness metrics at the different frequencies present in the ST. Due to noise-shaping properties of the ST deconvolution method, we anticipated a theoretical SNR gain of +4.26 dB in STOAE compared to TEOAE acquired under comparable settings. This prediction was confirmed by computer simulation. HLeq STOAE and TEOAE were then acquired from each of the 22 ears that were tested at five stimulation levels from 5 to 45 dB HL, and analyzed responses in terms of their overall SNR. We found that the overall SNR of the HLeq STOAE responses at stimulation levels at or above 15 dB HL was significantly higher than that of TEOAE by an average of +3.6 dB. Importantly, this leads to recording quality and time-saving improvements in clinical hearing screenings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdala C, Dhar S (2010) Distortion product otoacoustic emission phase and component analysis in human newborns. J Acoust Soc Am 127:316–325

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bennett CL, Özdamar Ö (2010) High-frequency transient evoked otoacoustic emissions acquisition with auditory canal compensated clicks using swept-tone analysis. J Acoust Soc Am 127:2410–2419

    Article  PubMed  Google Scholar 

  3. Bennett CL, Özdamar Ö (2010) Swept-tone transient evoked otoacoustic emissions. J Acoust Soc Am 128:1833–1844

    Article  PubMed  Google Scholar 

  4. Bennett C, Harris D, Tankanow A, Twilley R (2010) Effects of oversampling on SNR using swept-sine analysis. Presented at the 129th audio engineering society convention, 4–7 Nov, San Francisco, CA: 8232

  5. Burkard R (1984) Sound pressure level measurement and spectral analysis of brief acoustic transients. Electroencephalogr Clin Neurophysiol 57:83–91

    Article  CAS  PubMed  Google Scholar 

  6. Dau T, Wegner O, Mellert V, Kollmeier B (2000) Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107:1530–1540

    Article  CAS  PubMed  Google Scholar 

  7. Delgado RE, Özdamar Ö, Rahman S, Lopez CN (2000) Adaptive noise cancellation in a multimicrophone system for distortion product otoacoustic emission acquisition. IEEE T Bio-Med Eng 47:1154–1164

    Article  CAS  Google Scholar 

  8. Deng J, Chen S, Zeng X, Li G (2013) Using a dynamic tracking filter to extract distortion product otoacoustic emissions evoked with swept-tone signals. IEEE T Biomed Health Inform 18:1186–1195

    Article  Google Scholar 

  9. Durrant JD, Collet L (2007) Integrating otoacoustic emissions and electrophysiologic measures as the basis for differential diagnostic applications. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications, 3rd edn. Thieme, New York, pp 273–295

    Google Scholar 

  10. Elberling C, Don M, Cebulla M, Stürzebecher E (2007) Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delay. J Acoust Soc Am 122:2772–2785

    Article  PubMed  Google Scholar 

  11. Glattke TJ, Pafitis IA, Cummiskey C, Herer GR (1995) Identification of hearing loss in children and young adults using measures of transient otoacoustic emission reproducibility. Am J Audiol 4:71–86

    Article  Google Scholar 

  12. ISO (2003) Acoustics—normal equal-loudness-level contours. International Standards Organization: 226

  13. Janušauskas A, Marozas V, Engdahl B, Hoffman HJ, Svensson O, Sörnmo L (2001) Otoacoustic emissions and improved pass/fail separation using wavelet analysis and time windowing. Med Biol Eng Comput 39:134–139

    Article  PubMed  Google Scholar 

  14. Janušauskas A, Sörnmo L, Svensson O, Engdahl B (2002) Detection of transient-evoked otoacoustic emissions and the design of time windows. IEEE T Bio -Med Eng 49:132–139

    Article  Google Scholar 

  15. Jedrzejczak WW, Kochanek K, Sliwa L, Pilka E, Piotrowska A, Skarzynski H (2013) Chirp-evoked otoacoustic emissions in children. Int J Pediatr Otorhinolaryngol 77:101–106

    Article  PubMed  Google Scholar 

  16. Kalluri R, Shera CA (2007) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575

    Article  PubMed  Google Scholar 

  17. Kalluri R, Shera CA (2007) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121:2097–2110

    Article  PubMed  Google Scholar 

  18. Kalluri R, Shera CA (2013) Measuring stimulus-frequency otoacoustic emissions using swept tones. J Acoust Soc Am 134:356–368

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kemp DT, Ryan S, Bray P (1990) Otoacoustic emission analysis and interpretation for clinical purposes. Adv Audiol 7:77–98

    Google Scholar 

  20. Kramer SJ (2013) Audiology: science to practice. Plural Publishing, San Diego

    Google Scholar 

  21. Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626

    Article  PubMed  Google Scholar 

  22. Lonsbury-Martin BL, Whitehead ML, Martin GK (1991) Clinical applications of otoacoustic emissions. J Speech Hear Res 34:964–981

    Article  CAS  PubMed  Google Scholar 

  23. Mihajloski T, Lachowska M, Bennett CL, Ozdamar O (2011) Hearing level equalized otoacoustic emissions acquired by swept-tones: Intensity characteristics. In: Conferences Proceedings IEEE Eng Med Biol Soc, Boston, MA, 30 Aug 3 Sep 818–821

  24. Muller S, Massarani P (2001) Transfer-function measurement with sweeps. J Audio Eng Soc 49:443–471

    Google Scholar 

  25. Neumann J, Uppenkamp S, Kollmeier B (1994) Chirp evoked otoacoustic emissions. Hear Res 79:17–25

    Article  CAS  PubMed  Google Scholar 

  26. Novak A, Simon L, Kadlec F, Lotton P (2010) Nonlinear system identification using exponential swept-sine signal. IEEE T Instrum Meas 59:2220–2229

    Article  Google Scholar 

  27. Prieve BA, Schooling T, Venediktov R, Franceschini N (2015) An evidence-based systematic review on the diagnostic accuracy of hearing screening instruments for preschool- and school-age children. Am J Audiol 24:250–267

    Article  PubMed  Google Scholar 

  28. Ravazzani P, Tognola G, Grandori F, Ruohonen J (1998) Two-dimensional filter to facilitate detection of transient-evoked otoacoustic emissions. IEEE T Bio-Med Eng 45:1089–1096

    Article  CAS  Google Scholar 

  29. Ravazzani P, Tognola G, Parazzini M, Grandori F (2003) Principal component analysis as a method to facilitate fast detection of transient-evoked otoacoustic emissions. IEEE T Bio-Med Eng 50:249–252

    Article  Google Scholar 

  30. Siegel J, Hirohata E (1994) Sound calibration and distortion product otoacoustic emissions at high frequencies. Hear Res 80:146–152

    Article  CAS  PubMed  Google Scholar 

  31. Verhulst S, Harte JM, Dau T (2008) Temporal suppression and augmentation of click-evoked otoacoustic emissions. Hear Res 246:23–35

    Article  PubMed  Google Scholar 

  32. Yang L, Young S, Kuo T (2002) Modification of the wavelet method used in transiently evoked otoacoustic emission pass/fail criterion to increase its accuracy. Med Biol Eng Comput 40:34–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Bennett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, C.L., Mihajloski, T. & Özdamar, Ö. Signal-to-noise ratio improvement of swept-tone-generated transient otoacoustic emissions. Med Biol Eng Comput 55, 69–78 (2017). https://doi.org/10.1007/s11517-016-1507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1507-8

Keywords

Navigation