Skip to main content

Advertisement

Log in

Behaviour of two typical stents towards a new stent evolution

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study explores the analysis of a new stent geometry from two typical stents used to treat the coronary artery disease. Two different finite element methods are applied with different boundary conditions to investigate the stenosis region. Computational fluid dynamics (CFD) models including fluid–structure interaction are used to assess the haemodynamic impact of two types of coronary stents implantation: (1) type 1—based on a strut-link stent geometry and (2) type 2—a continuous helical stent. Using data from a recent clinical stenosis, flow disturbances and consequent shear stress alterations introduced by the stent treatment are investigated. A relationship between stenosis and the induced flow fields for the two types of stent designs is analysed as well as the correlation between haemodynamics and vessel wall biomechanical factors during the initiation and development of stenosis formation in the coronary artery. Both stents exhibit a good performance in reducing the obstruction artery. However, stent type 1 presents higher radial deformation than the type 2. This deformation can be seen as a limitation with a long-term clinical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Antoniadis A, Mortier P, Kassab G, Dubini G, Foin N, Murasato Y, Giannopoulos A, Tu S, Iwasaki K, Hikichi Y, Migliavacca F et al (2015) Biomechanical modeling to improve coronary artery bifurcation stenting: expert review document on techniques and clinical implementation. JACC Cardiovasc Interv 8(10):1281–1296

    Article  PubMed  Google Scholar 

  2. Bernard S, Bernard E, Barbat T, Albulescu V, Susan-Resiga R (2011) Effects of different types of input waveforms in patient-specific right coronary athereosclerosis hemodynamics analysis. In: Brebbia CA (ed) Modelling in medicine and biology. WitPress, Southampton, pp 55–72

    Chapter  Google Scholar 

  3. Berry J, Santamarina A, Moore J (2000) Experimental and computational flow evaluation of coronary stents. Ann Biomed Eng 28:386–398

    Article  CAS  PubMed  Google Scholar 

  4. Berry J, Manoach E, Mekkaoui C (2002) Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis. J Vasc Interv Radiol 13:97–105

    Article  PubMed  Google Scholar 

  5. Chiastra C, Morlacchi S, Gallo D, Morbiducci U, Cárdenes R, Larrabide I, Migliavacca F (2013) Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J R Soc Interface 10(84):20130193

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chiastra C, Migliavacca F, Martínez MÁ, Malvè M (2014) On the necessity of modelling fluid–structure interaction for stented coronary arteries. J Mech Behav Biomed Mater 30(34):217–230

    Article  Google Scholar 

  7. Chua S, MacDonald B, Hashmi M (2002) Finite-element simulation of stent expansion. J Mater Process Technol 120:335–340

    Article  CAS  Google Scholar 

  8. Chua S, MacDonald B, Hashmi M (2004) Effects of varying slotted tube (stent) geometry on its expansion behaviour using finite element method. J Mater Process Technol 155–156:1764–1771

    Article  Google Scholar 

  9. Chuong C, Fung Y (1984) Compressibility and constitutive equation of arterial wall in radial compression experiments. J Biomech 17(1):35–40

    Article  CAS  PubMed  Google Scholar 

  10. Dodds S (2002) The haemodynamics of asymmetric stenoses. Eur J Vasc Endovasc Surg 24:332–337

    Article  CAS  PubMed  Google Scholar 

  11. Duraiswamy N, Cesar J, Schoephoerster R (2008) Effects of stent geometry on local flow dynamics and resulting platelet deposition in an in vitro model. Biorheology 45:547–561

    PubMed  Google Scholar 

  12. Etave F, Finet G, Boivin M, Boyer J, Rioufol G, Thollet G (2001) Mechanical properties of coronary stents determined by using finite element analysis. J Biomech 34(8):1065–1075

    Article  CAS  PubMed  Google Scholar 

  13. Farb A, Burke A, Kolodgie F (2003) Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 108:1701–1706

    Article  PubMed  Google Scholar 

  14. Fung Y (1967) Elasticity of soft tissues in simple elongation. Am J Physiol 213(6):1532

    CAS  PubMed  Google Scholar 

  15. Fung G, Lam S, Cheng S, Chow K (2008) On stent-graft models in thoratic aortic endovascular repair. A computational investigation of the hemodynamic factors. Comput Biol Med 38:484–489

    Article  PubMed  Google Scholar 

  16. Gagliardi M (2012) Relevance of mesh dimension optimization, geometry simplification and discretization accuracy in the study of mechanical behaviour of bare metal stents. In: Gangopadhyay A (ed) Innovations in data methodologies and computational algorithms for medical applications. University of Maryland Baltimore County (UMBC), USA, p 15

    Google Scholar 

  17. Giddens D, Zarins C, Glagov S (1990) Response of arteries to near wall fluid dynamic behaviour. Appl Mech Rev 43(2):98–102

    Article  Google Scholar 

  18. Glagov S, Weisenberg E, Zarins C (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    Article  CAS  PubMed  Google Scholar 

  19. Gundert TJ (2011) Improving cardiovascular stent design using patient-specific models and shape optimization. Master's Theses (2009-), Milwaukee. http://epublications.marquette.edu/theses_open/128

  20. Hashimoto T, Meng H, Young W (2006) Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol Res 28:372–380

    Article  PubMed  PubMed Central  Google Scholar 

  21. Herzog C, Zwrner P, Doll J, Nielsen C, Nguyen S, Savino G, Vogl T, Costello P, Schoepf U (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244(1):112–120

    Article  PubMed  Google Scholar 

  22. Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, p 470. ISBN: 978-0-471-82319-3

  23. Holzapfel G, Gasser T, Ogden R (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  Google Scholar 

  24. Joel M, Anburajan M (2013) 3D Modeling of stenotic internal carotid artery treated with stent: a CFD analysis of blood. In: International Conference on Computer, Networks and Communicattion Engineering (ICCNCE)

  25. Jung H, Choi J, Park C (2004) Asymmetric flows of non-Newtonian fluids in a symmetric stenosed artery. Korea-Aust Rheol J 1(16):101–108

    Google Scholar 

  26. Kajzer W, Kackmarek M, Marciniak J (2005) Biomechanical analysis of stent–oesophagus system. J Mater Process Technol 162–163:196–202

    Article  Google Scholar 

  27. Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239:14–21

    Google Scholar 

  28. Katritsis D, Kaiktsis L, Chaniotis A (2007) Wall shear stress: theoretical considerations and methods of measurement. Prog Cardiovasc Dis 49:307–329

    Article  PubMed  Google Scholar 

  29. Kim H, Vignon-Clementel I, Coogan J, Figueroa C, Jansen K, Taylor C (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38(10):3195–3209

    Article  CAS  PubMed  Google Scholar 

  30. Ku D, Giddens D, Zarins C (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positie correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302

    Article  CAS  PubMed  Google Scholar 

  31. LaDisa J, Hettrick D, Olson L (2002) Stent implantation alters coronary artery hemodynamics and wall shear stress during maximal vasodilation. J Appl Physiol 93:1939–1946

    Article  PubMed  Google Scholar 

  32. LaDisa J, Guler I, Olson L (2003) 3D computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann Biomed Eng 31:972–980

    Article  PubMed  Google Scholar 

  33. LaDisa J, Olson L, Guler I, Hettrick D, Kersten J, Warltier D, Pagel P (2005) Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J Appl 98:947–957

    Google Scholar 

  34. LaDisa J, Olson L, Hettrick D, Warltier D, Kersten J, Pagel P (2006) Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling. Biomed Eng Online 5(40)

  35. Lally C, Dolan F, Prendergast P (2005) Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech 38:1574–1581. doi:10.1186/1475-925X-5-40

    Article  CAS  PubMed  Google Scholar 

  36. Masson I, Boutouyrie P, Laurent S, Humphrey J, Zidi M (2008) Characterization of arterial wall mechanical behavior and stresses from human clinical. J Biomech 41(12):2618–2627

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mates R, Gupta A, Bell A, Klocke F (1978) Fluid dynamics of coronary artery stenosis. Circ Res 42:152–162. doi:10.1161/01.RES.42.1.152

    Article  CAS  PubMed  Google Scholar 

  38. Migliavacca F, Petrini L, Montanari V, Quagliana I, Auricchio F, Dubini G (2005) A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med Eng Phys 27:13–18

    Article  PubMed  Google Scholar 

  39. Migliavacca F, Chiastra C, Chatzizisis Y, Dubini G (2015) Virtual bench testing to study coronary bifurcation stenting. EuroIntervention 11:31–34

    Article  Google Scholar 

  40. Morbiducci U, Ponzini R, Grigioni M, Redaelli A (2007) Helical flow as fluid dynamic signature for atherogenesis in aortocoronary bypass. A numeric study. J Biomech 40:519–534. doi:10.1016/j.jbiomech.2006.02.017

    Article  PubMed  Google Scholar 

  41. Mortier P, Wentzel J, De Santis G, Chiastra C, Migliavacca F, De Beule M, Louvard Y, Dubini G (2015) Patient-specific computer modelling of coronary bifurcation stenting: the John Doe programme. Eurointervention 11(V):35–39

    Article  Google Scholar 

  42. Murphy J, Boyle F (2007) Comparison of stent designs using computational fluid dynamics. In: 10th Annual Sir Bernard Crossland Sysmposium

  43. Patel D, Fry D (1969) The elastic symmetry of arterial segments in dogs. Circu Res 24(1):1–8

    Article  CAS  Google Scholar 

  44. Raghavan M, Vorp D (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33(4):475

    Article  CAS  PubMed  Google Scholar 

  45. Schuessler A, Piper M (2004) Boundaries for the use of nitinol in medical applications. In: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Baden-Baden

  46. Sioglas P, Papafaklis M, Sakellarios A, Stefanou K, Bourantas C, Athanasiou L, Exarchos T, Naka K, Michalis L, Parodi O, Fotiadis D (2015) Patient-specific simulation of coronary artery pressure measurements: an in vivo 3D validation study in humans. Biomed Res Int. doi:10.1155/2015/628416

    Google Scholar 

  47. Stehbens W (1987) Etiology of intracranial berry aneurysms. J Neurosurg 6(70):823–831

    Google Scholar 

  48. Tambaca J, Canic S, Kosor M, Fish R, Paniagua D (2011) Mechanical behavior of fully expanded commercially available endovascular coronary stents. Tex Heart Inst J 5(38):491–501

    Google Scholar 

  49. Torii R, Wood N, Hadjiloizou N, Dowsey A, Wright A, Hughes A, Davies J, Francis D, Mayet J, Yang G, Thom S, Yun X (2008) Differences in coronary artery hemodynamics due to changes in flow and vascular geometry after percutaneous coronary intervention. Heart 94:A1–A4

    Google Scholar 

  50. Vorp D, Rajagopal K, Smolinski P, Borovetz H (1995) Identification of elastic properties of homogeneous, orthotropic vascular segments in distension. J Biomech 28(5):501–512

    Article  CAS  PubMed  Google Scholar 

  51. Zamir M, Sinclair P, Wonnacott T (1992) Relation between diameter and flow in major branches of the arch of the aorta. J Biomech 25(11):1303–1310

    Article  CAS  PubMed  Google Scholar 

  52. Zierler R, Summer D (2010) Arterial physiology. In: Vascular surgery. Elsevier, Philadelphia, p Chapter 9

Download references

Acknowledgments

This research was funded by the Portuguese Foundation for the Science and Technology (FCT) through the Doctoral Grant—SFRH/BD/68293/2010 of the first author. Also thanks to CEris (Civil Engineering Research and Innovation for Sustainability) of the Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico (IST), University of Lisbon (ULisbon).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Simão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simão, M., Ferreira, J.M., Mora-Rodriguez, J. et al. Behaviour of two typical stents towards a new stent evolution. Med Biol Eng Comput 55, 1019–1037 (2017). https://doi.org/10.1007/s11517-016-1574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1574-x

Keywords

Navigation