Skip to main content
Log in

Young and advanced tumor—some 2D electrodynamic distinctions: melanoma and satellite during a vascular occlusion test: feasibility study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Conventional methods of electrobioimpedance imaging are not suited for adequate visualization of the skin electrical impedance landscape (SEL) because they do not provide high spatial resolution at large enough area of view. The skin electrodynamics introscopy (SEI) enabled dynamic spectral imaging of the SEL at 32 × 64 mm2 area with 1 mm spatial resolution. The focus of the study was to investigate the SEL distinguishing features between early and advanced-stage cancer at the model object of melanoma and its satellite. The analysis of the test-induced SEL metamorphoses was carried out at the periods of blood-stop and blood-restoration. It was found that the young tumor could be reliably visualized and distinguished by its antiphase hypoxia-induced response as compared to that of the advanced one. In response to the blood-restoration, an appearance of newly formed SEL clusters pointed out apparently at vascular abnormalities associated with the tumor. Similar SEL clusterization can be supposedly expected in response to any other test factors which affect cell permeability or/and blood viscosity. The proposed approach might be useful for more thorough mapping and staging malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aberg P, Birgersson U, Elsner P, Mohr P, Ollmar S (2011) Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma. Exp Dermatol 20(8):648–652

    Article  PubMed  Google Scholar 

  2. Babich J (1992) Impedanz-Bild (Introscopie) von biologischen Gewebe Verfahren. Deutsche Zeitschrift fur Akupunktur 35(4):93–97 & 5:103–109

    Google Scholar 

  3. Babich Y. Cancer problem in the eyes of the skin multiparameter electrophysiological imaging. in a book: The future of life and the future of our civilization, Springer 2006; p. 307–321 (Note: There was a minor mistake in this work—the gel-electrode impedance fluctuations were hypothesized as some “metabolic flashes”).

  4. Babich Y (2000) Quasistationary and autowave structures of the skin electrobioimpedance relief. Rep Ukr NAS 4:199–204

    Google Scholar 

  5. Babich Y, Bakai E (1997) The skin electrophysiological imaging: some multi-parameter observations. Med Biol Eng Comput 35(part 1):349

    Google Scholar 

  6. Babich Y, Nuzhdina M (2009) Visualization of the skin electrodynamic landscape: some phenomenological features in norm and oncopathology. Springer Proc. of the World Congress on Medical Physics and Biomedical Engineering, Munich, pp 894–897

    Google Scholar 

  7. Baish J, Stylianopoulos T, Lanning R, Kamoun W, Fukumura D, Munn L, Jain R (2011) Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc Natl Acad Sci U S A 1:799–803

    Google Scholar 

  8. Casas O, Bragos R, Riu P, Rosell J, Tresanchez M, Warren M, Rodriguez-Sinovas A, Carreno A, Cinca J (1999) In vivo and in situ ischemic tissue characterization using electrical impedance spectroscopy. Ann N Y Acad Sci 873:51–58

    Article  CAS  PubMed  Google Scholar 

  9. Fukumura D, Jain R (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    Article  CAS  PubMed  Google Scholar 

  10. Gersing E, Kelleher D, Vaupel P (2003) Tumour tissue monitoring during photodynamic and hyperthermic treatment using bioimpedance spectroscopy. Physiol Meas 24(2):625–637

    Article  CAS  PubMed  Google Scholar 

  11. Glickman Y, Filo O, David M, Yayon A, Topaz M, Zamir B, Ginzburg A, Rozenman D, Kenan G (2003) Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Res and Technol 9(3):262–268

    Article  Google Scholar 

  12. Grimnes S, Martinsen Ø (2014) Bioimpedance and bioelectricity basics 2nd ed. Academic, London

    Google Scholar 

  13. Habibi M, Klemer D, Raicu V (2012) Two-dimensional dielectric spectroscopy: implementation and validation of a scanning open-ended coaxial probe. Skin Res Technol 18(3):324

    Article  PubMed  Google Scholar 

  14. Halter R, Hartov A, Paulsen K (2008) Video rate electrical impedance tomography of vascular changes preclinical development. Physiol Meas 29(3):349–364

    Article  PubMed  PubMed Central  Google Scholar 

  15. Holder D (1992) Detection of cerebral ischaemia in the anaesthetized rat by impedance measurement with scalp electrodes: implications for non-invasive imaging of stroke by electrical impedance tomography. Clin Phys Physiol Meas 1:63–75

    Article  Google Scholar 

  16. Hou T, Loh K, Lynch J (2007) Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications. Nanotechnology 18:315501

    Article  Google Scholar 

  17. Huigen E, Peper A, Grimbergen C (2012) Investigation into the origin of the noise of surface electrodes. Med Biol Eng Comput 40:332–338

    Article  Google Scholar 

  18. Isaacson D (1986) Distinguishability of conductivities by electric current computed tomography. IEEE Trans Med Imaging 5(2):91–95

    Article  CAS  PubMed  Google Scholar 

  19. Jain R (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051

    CAS  PubMed  Google Scholar 

  20. Lingwood B, Dunster K, Healy G, Ward L, Colditz P (2003) Cerebral impedance and neurological outcome following a mild or severe hypoxic/ischemic episode in neonatal piglets. Brain Res 969(1–2):160–167

    Article  CAS  PubMed  Google Scholar 

  21. Malvehy J, Hauschild A, Curiel-Lewandrowski C, Mohr P, Hofmann-Wellenhof R, Motley R, Berking C, Grossman D, Paoli J, Loquai C, Olah J, Reinhold U, Wenger H, Dirschka T, Davis S, Henderson C, Rabinovitz H, Welzel J, Schadendorf D, Birgersson U (2014) Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br J Dermatol 171(5):1099–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mamdouh M, Abdel-Rahman M (2012) Using electrical impedance tomography in following up skin conductivity change for different sonophoresis conditions. J Biophys Struct Biol 4:113–120

    Google Scholar 

  23. Mehta C, Patel N, Tsiatis A (1984) Exact significance testing to establish treatment equivalence with ordered categorical data. Biometrics 40(3):819–825

    Article  CAS  PubMed  Google Scholar 

  24. Mohr P, Birgersson U, Berking C, Henderson C, Trefzer U, Kemeny L, Sunderkotter C, Dirschka T, Motley R, Frohm-Nilsson M, Reinhold U, Loquai C, Braun R, Nyberg F, Paoli J (2013) Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Res Technol 19:75–83

    Article  PubMed  Google Scholar 

  25. Nagy J, Chang S, Dvorak A, Dvorak H (2009) Why are tumor blood vessels abnormal and why is it important to know? Br J Cancer 100:865–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Netti P, Roberge S, Boucher Y, Baxter L, Jain R (1996) Effect of transvascular fluid exchange on pressure-flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity. Microvasc Res 52:27–46

    Article  CAS  PubMed  Google Scholar 

  27. Ollmar S, Nicander I, Ollmar J, Emtestam L (1997) Information in full and reduced data sets of electrical impedance spectra from various skin conditions, compared using a holographic neural network. Med Biol Eng Comput 35(4):415–419

    Article  CAS  PubMed  Google Scholar 

  28. Reyal J, Lebas N, Zlatanova I, Vilar J, Silvestre J (2015) Post-occlusive-reactive-hyperemia-in-mouse-melanoma. J Cancer Res Therap Oncol 3:101

    Google Scholar 

  29. Swartz M and Lund A. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nature Reviews |Cancer. 2012; 12: 219

  30. Scott A (2005) Encyclopedia of nonlinear science. Routledge 1:104

    Google Scholar 

  31. Tallgren P, Vanhatalo S, Kaila K, Voipio J (2005) Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol 116:799–806

    Article  CAS  PubMed  Google Scholar 

  32. Upputuri P, Sivasubramanian K, Mark C, Pramanik M (2015) Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. BioMed Res Int ID 783983, 9 pages

  33. Widelitz R, Baker R, Plikus M, Lin C, Maini P, Paus R, Chuong C (2006) Distinct mechanisms underlie pattern formation in the skin and skin appendages review. Birth Defects Res (Part C) 78:280–291

    Article  CAS  Google Scholar 

  34. Yuan F, Salehi H, Boucher Y, Vasthare U, Tuma R, Jain R (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54:4564–4568

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We kindly acknowledge Prof. Uwe Pliquett and Prof. Vitaliy Maksymenko for the fruitful discussions and remarks.

Glossary

θ k , θ M - phase angles at 2 kHz and 1 MHz (in degrees), (i.e., Z = |Z|e)

σ - standard deviation

|Z k |, |Z M | - electrical impedance modules at 2 kHz and 1 MHz (in kOhms), respectfully

2D - two dimensional

MIX = |Z k |/|Z M - |magnitude index

MV - mean value

PIX = (θ k –θ M ) - phase index (in degrees)

p - significance level

r - correlation coefficient

SEL - the skin electrical impedance landscape

SEI - the skin electrodynamics introscopy

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Babich.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babich, Y., Nuzhdina, M. & Syniuta, S. Young and advanced tumor—some 2D electrodynamic distinctions: melanoma and satellite during a vascular occlusion test: feasibility study. Med Biol Eng Comput 56, 211–220 (2018). https://doi.org/10.1007/s11517-017-1668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1668-0

Keywords

Navigation