Skip to main content

Advertisement

Log in

A review of computational models of bone fracture healing

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In the process of fracture healing, there are many cellular and molecular events that are regulated by mechanical stimuli and biochemical signals. To explore the unknown mechanisms underlying bone fracture healing, optimal fixation configurations, and the design of new treatment strategies, computational healing models provide a good solution. With the simulation of mechanoregulatory healing models, bioregulatory healing models and coupled mechanobioregulatory healing models, healing outcomes can be predicted. In this review, first, we provide an overview of current computational healing models. Their clinical applications are also presented. Then, the limitations of current models and their corresponding solutions are discussed in this review. Finally, future potentials are presented in this review. Multiscale modeling from the intracellular level to the tissue level is essential, and more clinical applications of computational healing models are required in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Glowacki J (1998) Angiogenesis in fracture repair. Clin Orthop Relat Res 355:82–89

    Article  Google Scholar 

  2. Overgaard S (2000) Calcium phosphate coatings for fixation of bone implants—evaluated mechanically and histologically by stereological methods. Acta Orthop Scand 71:1–74. doi:10.1080/000164700753759574

    Article  Google Scholar 

  3. Perren SM (1979) Physical and biological aspects of fracture-healing with special reference to internal-fixation. Clin Orthop Relat Res 138:175–196

    Google Scholar 

  4. Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15:577–584. doi:10.1002/jor.1100150414

    Article  CAS  PubMed  Google Scholar 

  5. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355:132–147

    Article  Google Scholar 

  6. Goodship AE, Kenwright J (1985) The influence of induced mircomovement upon the healing of experiment tibial fractures. J Bone Joint Surg Br Vol 67:650–655

    Article  CAS  Google Scholar 

  7. Boskey AL, Wright TM, Blank RD (1999) Collagen and bone strength. J Bone Miner Res 14:330–335. doi:10.1359/jbmr.1999.14.3.330

    Article  CAS  PubMed  Google Scholar 

  8. King JA, Marker PC, Seung KJ, Kingsley DM (1994) BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166:112–122. doi:10.1006/dbio.1994.1300

    Article  CAS  PubMed  Google Scholar 

  9. Kocher MS, Shapiro F (1998) Osteogenesis imperfecta. J Am Acad Orthop Surg 6:225–236

    Article  CAS  PubMed  Google Scholar 

  10. Virdi AS, Shore EM, Oreffo ROC, Li M, Connor JM, Smith R, Kaplan FS, Triffitt JT (1999) Phenotypic and molecular heterogeneity in fibrodysplasia ossificans progressiva. Calcif Tissue Int 65:250–255. doi:10.1007/s002239900693

    Article  CAS  PubMed  Google Scholar 

  11. Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355:41–55

    Article  Google Scholar 

  12. Loboa EG, Beaupre GS, Carter DR (2001) Mechanobiology of initial pseudoarthrosis formation with oblique fracture. J Orthop Res 19:1067–1072. doi:10.1016/S0736-0266(01)00028-6

    Article  CAS  PubMed  Google Scholar 

  13. Gardner TN, Mishra S, Marks L (2004) The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus. Med Eng Phys 26:493–501. doi:10.1016/j.medengphy.2004.03.009

    Article  PubMed  Google Scholar 

  14. Morgan EF, Longaker MT, Carter DR (2006) Relationships between tissue dilatation and differentiation in distraction osteogenesis. Matrix Biol 25:94–103. doi:10.1016/j.matbio.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  15. Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32:255–266. doi:10.1016/S0021-9290(98)00153-5

    Article  CAS  PubMed  Google Scholar 

  16. Ament C, Hofer E (2000) A fuzzy logic model of fracture healing. J Biomech 33:961–968. doi:10.1016/S0021-9290(00)00049-X

    Article  CAS  PubMed  Google Scholar 

  17. Shefelbine SJ, Augat P, Claes L, Simon U (2005) Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech 38:2440–2450. doi:10.1016/j.jbiomech.2004.10.019

    Article  PubMed  Google Scholar 

  18. Wehner T, Claes L, Niemeyer F, Nolte D, Simon U (2010) Influence of the fixation stability on the healing time—a numerical study of a patient-specific fracture healing process. Clin Biomech 25:606–612. doi:10.1016/j.clinbiomech.2010.03.003

    Article  Google Scholar 

  19. Prendergast PJ, Huiskes R, Soballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30:539–548. doi:10.1016/s0021-9290(96)00140-6

    Article  CAS  PubMed  Google Scholar 

  20. Miramini S, Zhang LH, Richardson M, Pirpiris M, Mendis P, Oloyede K, Edwards G (2015) Computational simulation of the early stage of bone healing under different configurations of locking compression plates. Comput Methods Biomech Biomed Eng 18:900–913. doi:10.1080/10255842.2013.855729

    Article  Google Scholar 

  21. Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40:14–21

    Article  CAS  PubMed  Google Scholar 

  22. Geris L, Andreykiv A, Van Oosterwyck H, Vander Sloten J, van Keulen F, Duyck J, Naert I (2004) Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber. J Biomech 37:763–769. doi:10.1016/j.jbiomech.2003.09.026

    Article  CAS  PubMed  Google Scholar 

  23. Kelly DJ, Prendergast PJ (2005) Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38:1413–1422. doi:10.1016/j.jbiomech.2004.06.026

    Article  CAS  PubMed  Google Scholar 

  24. Gomez-Benito MJ, Garcia-Aznar JM, Kuiper JH, Doblare M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235:105–119. doi:10.1016/j.jtbi.2004.12.023

    Article  CAS  PubMed  Google Scholar 

  25. Gomez-Benito MJ, Garcia-Aznar JM, Kuiper JH, Doblare M (2006) A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator. J Biomech Eng 128:290–299. doi:10.1115/1.2187045

    Article  CAS  PubMed  Google Scholar 

  26. Andreykiv A, van Keulen F, Prendergast PJ (2008) Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 7:443–461. doi:10.1007/s10237-007-0108-8

    Article  CAS  PubMed  Google Scholar 

  27. Perez MA, Prendergast PJ (2007) Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J Biomech 40:2244–2253. doi:10.1016/j.jbiomech.2006.10.020

    Article  CAS  PubMed  Google Scholar 

  28. Byrne DP, Lacroix D, Prendergast PJ (2011) Simulation of fracture healing in the tibia: mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res 19:1496–1503. doi:10.1002/jor.21362

    Article  Google Scholar 

  29. Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252:230–246. doi:10.1016/j.jtbi.2008.01.030

    Article  PubMed  Google Scholar 

  30. Checa S, Prendergast PJ (2009) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng 37:129–145. doi:10.1007/s10439-008-9594-9

    Article  PubMed  Google Scholar 

  31. Chen G, Niemeyer F, Wehner T, Simon U, Schuetz MA, Pearcy MJ, Claes LE (2009) Simulation of the nutrient supply in fracture healing. J Biomech 42:2575–2583. doi:10.1016/j.jbiomech.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  32. Simon U, Augat P, Utz M, Claes L (2011) A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput Methods Biomech Biomed Eng 14:79–93. doi:10.1080/10255842.2010.499865

    Article  CAS  Google Scholar 

  33. Steiner M, Claes L, Ignatius A, Simon U, Wehner T (2014) Numerical simulation of callus healing for optimization of fracture fixation stiffness. PLoS One 9:e101370. doi:10.1371/journal.pone.0101370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Alierta JA, Perez MA, Seral B, Garcia-Aznar JM (2016) Biomechanical assessment and clinical analysis of different intramedullary nailing systems for oblique fractures. Comput Methods Biomech Biomed Engin 19:1266–1277. doi:10.1080/10255842.2015.1125473

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Aznar JM, Kuiper JH, Gomez-Benito MJ, Doblare M, Richardson JB (2007) Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J Biomech 40:1467–1476. doi:10.1016/j.jbiomech.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  36. Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M (2010) Growth mixture model of distraction osteogenesis: effect of pre-traction stresses. Biomech Model Mechanobiol 9:103–115. doi:10.1007/s10237-009-0162-5

    Article  PubMed  Google Scholar 

  37. Isaksson H, Comas O, van Donkelaar CC, Mediavilla J, Wilson W, Huiskes R, Ito K (2007) Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J Biomech 40:2002–2011. doi:10.1016/j.jbiomech.2006.09.028

    Article  PubMed  Google Scholar 

  38. Wilson CJ, Schuetz MA, Epari DR (2015) Effects of strain artifacts arising from a pre-defined callus domain in models of bone healing mechanobiology. Biomech Model Mechanobiol 14:1129–1141. doi:10.1007/s10237-015-0659-z

    Article  PubMed  Google Scholar 

  39. Bailon-Plaza A, van der Meulen MCH (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212:191–209. doi:10.1006/jtbi.2001.2372

    Article  CAS  PubMed  Google Scholar 

  40. Geris L, Gerisch A, Sloten JV, Weiner R, Oosterwyck HV (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 251:137–158. doi:10.1016/j.jtbi.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  41. Peiffer V, Gerisch A, Vandepitte D, Van Oosterwyck H, Geris L (2011) A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech Model Mechanobiol 10:383–395. doi:10.1007/s10237-010-0241-7

    Article  PubMed  Google Scholar 

  42. Carlier A, Geris L, Bentley K, Carmeliet G, Carmeliet P, Van Oosterwyck H (2012) MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells. PLoS Comput Biol 8:e1002724. doi:10.1371/journal.pcbi.1002724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carlier A, Geris L, van Gastel N, Carmeliet G, Van Oosterwyck H (2015) Oxygen as a critical determinant of bone fracture healing-a multiscale model. J Theor Biol 365:247–264. doi:10.1016/j.jtbi.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  44. Bailon-Plaza A, van der Meulen MCH (2003) Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J Biomech 36:1069–1077. doi:10.1016/s0021-9290(03)00117-9

    Article  PubMed  Google Scholar 

  45. Geris L, Sloten JV, Van Oosterwyck H (2010) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Model Mechanobiol 9:713–724. doi:10.1007/s10237-010-0208-8

    Article  CAS  PubMed  Google Scholar 

  46. Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67:932–949

    PubMed  Google Scholar 

  47. Einhorn TA (1995) Enhancement of fracture-healing. J Bone Joint Surg-Am vol 77:940–956

    Article  CAS  Google Scholar 

  48. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:7–21

    Article  Google Scholar 

  49. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884. doi:10.1002/jcb.10435

    Article  CAS  PubMed  Google Scholar 

  50. Hadjiargyrou M, Lombardo F, Zhao SC, Ahrens W, Joo J, Ahn H, Jurman M, White DW, Rubin CT (2002) Transcriptional profiling of bone regeneration—insight into the molecular complexity of wound repair. J Biol Chem 277:30177–30182. doi:10.1074/jbc.M203171200

    Article  CAS  PubMed  Google Scholar 

  51. Taguchi K, Ogawa R, Migita M, Hanawa H, Ito H, Orimo H (2005) The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model. Biochem Biophys Res Commun 331:31–36. doi:10.1016/j.bbrc.2005.03.119

    Article  CAS  PubMed  Google Scholar 

  52. Claes LE, Wilke HJ, Augat P, Rubenacker S, Margevicius KJ (1995) Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech 10:227–234. doi:10.1016/0268-0033(95)99799-8

    Article  CAS  Google Scholar 

  53. Epari DR, Taylor WR, Heller MO, Duda GN (2006) Mechanical conditions in the initial phase of bone healing. Clin Biomech 21:646–655. doi:10.1016/j.clinbiomech.2006.01.003

    Article  Google Scholar 

  54. Kenwright J, Goodship AE (1989) Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res 241:36–47

    Google Scholar 

  55. Kenwright J, Richardson JB, Cunningham JL, White SH, Goodship AE, Adams MA, Magnussen PA, Newman JH (1991) Axial movement and tibial fractures: a controlled randomised trial of treatment. J Bone Joint Surg (Br) 73:654–659

    CAS  Google Scholar 

  56. Augat P (2003) Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 21:1011–1017. doi:10.1016/S0736-0266(03)00098-6

    Article  PubMed  Google Scholar 

  57. Bishop NE, Van RM, Tami I, Corveleijn R, Schneider E, Ito K (2006) Shear does not necessarily inhibit bone healing. Clin Orthop Relat Res 443:307–314. doi:10.1097/01.blo.0000191272.34786.09

    Article  CAS  PubMed  Google Scholar 

  58. Park SH, O’Connor K, Mckellop H, Sarmiento A (1998) The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg Am 80:868–878

    Article  CAS  PubMed  Google Scholar 

  59. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14:1805–1815. doi:10.1359/jbmr.1999.14.11.1805

    Article  CAS  PubMed  Google Scholar 

  60. Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8:980–989

    Article  CAS  PubMed  Google Scholar 

  61. Hulth A (1989) Current concepts of fracture-healing. Clin Orthop Relat Res 249:265–284

    Google Scholar 

  62. Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19:1–12

    Article  Google Scholar 

  63. Marden LJ, Fan RSP, Pierce GF, Reddi AH, Hollinger JO (1993) Platelet-derived growth factor inhibits bone regeneration induced by osteogenin, a bone morphogenetic protein, in rat craniotomy defects. J Clin Invest 92:2897–2905. doi:10.1172/jci116912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sakou T (1998) Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 22:591–603

    Article  CAS  PubMed  Google Scholar 

  65. Joyce ME, Jingushi S, Bolander ME (1990) Role of transforming growth factor-beta in fracture repair. Ann N Y Acad Sci 21:199–209

    CAS  Google Scholar 

  66. Bostrom MPG, Asnis P (1998) Transforming growth factor beta in fracture repair. Clin Orthop Relat Res 355:124–131

    Article  Google Scholar 

  67. Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110:2195–2207. doi:10.1083/jcb.110.6.2195

    Article  CAS  PubMed  Google Scholar 

  68. Saadeh PB, Mehrara BJ, Steinbrech DS, Dudziak ME, Greenwald JA, Luchs JS, Spector JA, Ueno H, Gittes GK, Longaker MT (1999) Transforming growth factor-β1 modulates the expression of vascular endothelial growth factor by osteoblasts. Am J Physiol-Cell Physiol 277:628–637

    Google Scholar 

  69. Bostrom MPG, Lane JM, Berberian WS, Missri AAE, Tomin E, Weiland A, Doty SB, Glaser D, Rosen VM (1995) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 13:357–367. doi:10.1002/jor.1100130309

    Article  CAS  PubMed  Google Scholar 

  70. Street J, Bao M, Deguzman L, Bunting S, Jr PF, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99:9656–9661. doi:10.1073/pnas.152324099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW (2000) Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141:1667–1674. doi:10.1210/endo.141.5.7458

    Article  CAS  PubMed  Google Scholar 

  72. Mayr-Wohlfart U, Waltenberger J, Hausser H, Kessler S, Günther KP, Dehio C, Puhl W, Brenner RE (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30:472–477

    Article  CAS  PubMed  Google Scholar 

  73. Midy V, Plouet J (1994) Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Commun 199:380–386. doi:10.1006/bbrc.1994.1240

    Article  CAS  PubMed  Google Scholar 

  74. Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA (2003) Altered fracture repair in the absence of MMP9. Development 130:4123–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF 164 and VEGF 188. Mech Dev 111:61–73

    Article  CAS  PubMed  Google Scholar 

  76. Fang TD, Salim A, Xia W, Nacamuli RP, Guccione S, Song HM, Carano RA, Filvaroff EH, Bednarski MD, Giaccia AJ, Longaker MT (2005) Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res 20:1114–1124. doi:10.1359/JBMR.050301

    Article  CAS  PubMed  Google Scholar 

  77. Lu C, Miclau T, Hu D, Marcucio RS (2007) Ischemia leads to delayed-union during fracture healing: a mouse model. J Orthop Res 25:51–61. doi:10.1002/jor.20264

    Article  PubMed  PubMed Central  Google Scholar 

  78. Maes C, Coenegrachts L, Stockmans I, Daci E, Luttun A, Petryk A, Gopalakrishnan R, Moermans K, Smets N, Verfaillie CM (2006) Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J Clin Invest 116:1230–1242. doi:10.1172/JCI26772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu C, Saless N, Wang X, Sinha A, Decker S, Kazakia G, Hou H, Williams B, Swartz HM, Hunt TK, Miclau T, Marcucio RS (2013) The role of oxygen during fracture healing. Bone 52:220–229. doi:10.1016/j.bone.2012.09.037

    Article  CAS  PubMed  Google Scholar 

  80. Maes C, Carmeliet G, Schipani E (2012) Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol 8:358–366. doi:10.1038/nrrheum.2012.36

    Article  CAS  PubMed  Google Scholar 

  81. Xie C, Liang B, Xue M, Lin AS, Loiselle A, Schwarz EM, Guldberg RE, O’Keefe RJ, Zhang X (2009) Rescue of impaired fracture healing in COX-2-/- mice via activation of prostaglandin E2 receptor subtype 4. Am J Pathol 175:772–785. doi:10.2353/ajpath.2009.081099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bouletreau PJ, Warren SM, Spector JA, Peled ZM, Gerrets RP, Greenwald JA, Longaker MT (2002) Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg 109:2384–2397. doi:10.1097/00006534-200206000-00033

    Article  PubMed  Google Scholar 

  83. Komatsu DE, Hadjiargyrou M (2004) Activation of the transcription factor HIF-1 and its target genes, VEGF, HO-1, iNOS, during fracture repair. Bone 34:680–688. doi:10.1016/j.bone.2003.12.024

    Article  CAS  PubMed  Google Scholar 

  84. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684. doi:10.1038/nm0603-677

    Article  CAS  PubMed  Google Scholar 

  85. Wan C, Gilbert SR, Wang Y, Cao X, Shen X, Ramaswamy G, Jacobsen KA, Alaql ZS, Eberhardt AW, Gerstenfeld LC, Einhorn TA, Deng L, Clemens TL (2008) Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A 105:686–691. doi:10.1073/pnas.0708474105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358:948–953. doi:10.1016/j.bbrc.2007.05.054

    Article  CAS  PubMed  Google Scholar 

  87. Hirao M, Tamai N, Tsumaki N, Yoshikawa H, Myoui A (2006) Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem 281:31079–31092. doi:10.1074/jbc.M602296200

    Article  CAS  PubMed  Google Scholar 

  88. Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Muller I (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11:11. doi:10.1186/1471-2121-11-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345–355. doi:10.1002/jcp.1081

    Article  CAS  PubMed  Google Scholar 

  90. Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT (2006) Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physiol Cell Physiol 290:1139–1145. doi:10.1152/ajpcell.00415.2005

    Article  CAS  Google Scholar 

  91. Merceron C, Vinatier C, Portron S, Masson M, Amiaud J, Guigand L, Cherel Y, Weiss P, Guicheux J (2010) Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Phys Cell Phys 298:355–364. doi:10.1152/ajpcell.00398.2009

    Article  CAS  Google Scholar 

  92. Meyer EG, Buckley CT, Thorpe SD, Kelly DJ (2010) Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J Biomech 43:2516–2523. doi:10.1016/j.jbiomech.2010.05.020

    Article  PubMed  Google Scholar 

  93. Ren H, Cao Y, Zhao Q, Li J, Zhou C, Liao L, Jia M, Zhao Q, Cai H, Han ZC, Yang R, Chen G, Zhao RC (2006) Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem Biophys Res Commun 347:12–21. doi:10.1016/j.bbrc.2006.05.169

    Article  CAS  PubMed  Google Scholar 

  94. Wagegg M, Gaber T, Lohanatha FL, Hahne M, Strehl C, Fangradt M, Tran CL, Schonbeck K, Hoff P, Ode A, Perka C, Duda GN, Buttgereit F (2012) Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS One 7:e46483. doi:10.1371/journal.pone.0046483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu Y, Malladi P, Chiou M, Bekerman E, Giaccia AJ, Longaker MT (2007) In vitro expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis. Tissue Eng 13:2981–2993. doi:10.1089/ten.2007.0050

    Article  CAS  PubMed  Google Scholar 

  96. Zscharnack M, Poesel C, Galle J, Bader A (2009) Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel. Cells Tissues Organs 190:81–93. doi:10.1159/000178024

    Article  CAS  PubMed  Google Scholar 

  97. Pauwels F (1960) A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. The tenth contribution to the functional anatomy and causal morphology of the supporting structure. Z Anat Entwicklungsgesch 121:478–515

    Article  CAS  PubMed  Google Scholar 

  98. Perren SM, Cordey J (1980) The concept of interfragmentary strain. In: Uhthoff HK (ed) Current Concepts of Internal Fixation of Fractures. Springer-Verlag, Heidelberg, pp 63–77

    Google Scholar 

  99. Carter DR, Blenman PR, Beaupré GS (1988) Correlations between mechanical stress history and tissue differentiation in initial fracture healing. Clin Orthop Relat Res 6:736–748. doi:10.1002/jor.1100060517

    Article  CAS  Google Scholar 

  100. Huiskes R, van Driel WD, Prendergast PJ, Soballe K (1997) A biomechanical regulatory model for perriprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med 8:785–788

    Article  CAS  PubMed  Google Scholar 

  101. Blenman PR, Carter DR, Beaupre GS (1989) Role of mechanical loading in the progressive ossification of a fracture callus. J Orthop Res 7:398–407. doi:10.1002/jor.1100070312

    Article  CAS  PubMed  Google Scholar 

  102. Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163–1171. doi:10.1016/s0021-9290(02)00086-6

    Article  CAS  PubMed  Google Scholar 

  103. Kang KT, Park JH, Kim HJ, Lee HM, Lee KI, Jung HH, Lee HY, Shim YB, Jang JW (2011) Study on differentiation of mesenchymal stem cells by mechanical stimuli and an algorithm for bone fracture healing. Tissue Eng Regen Med 8:359–370

    Google Scholar 

  104. Simon U, Augat P, Utz M, Claes L (2003) Simulation of tissue development and vascularisation in the callus healing process. Trans Orthop Res Soc 28:299

    Google Scholar 

  105. Wang MN, Sun L, Yang N, Mao ZY (2016) Fracture healing process simulation based on 3D model and fuzzy logic. J Intell Fuzzy Syst 31:2959–2965. doi:10.3233/jifs-169180

    Article  Google Scholar 

  106. Steiner M, Claes L, Ignatius A, Niemeyer F, Simon U, Wehner T, Wehner T (2013) Prediction of fracture healing under axial loading, shear loading and bending is possible using distortional and dilatational strains as determining mechanical stimuli. J R Soc Interface 10. doi:10.1098/rsif.2013.0389

  107. Alierta JA, Perez MA, Garcia-Aznar JM (2014) An interface finite element model can be used to predict healing outcome of bone fractures. J Mech Behav Biomed Mater 29:328–338. doi:10.1016/j.jmbbm.2013.09.023

    Article  CAS  PubMed  Google Scholar 

  108. Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M (2009) Modeling distraction osteogenesis: analysis of the distraction rate. Biomech Model Mechanobiol 8:323–335. doi:10.1007/s10237-008-0138-x

    Article  CAS  PubMed  Google Scholar 

  109. Ribeiro FO, Folgado J, Garcia-Aznar JM, Gomez-Benito MJ, Fernandes PR (2014) Is the callus shape an optimal response to a mechanobiological stimulus? Med Eng Phys 36:1508–1514. doi:10.1016/j.medengphy.2014.07.015

    Article  PubMed  Google Scholar 

  110. Geris L, Van Oosterwyck H, Vander Sloten J, Duyck J, Naert I (2003) Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants. Comput Methods Biomech Biomed Engin 6:277–288. doi:10.1080/10255840310001634412

    Article  CAS  PubMed  Google Scholar 

  111. Isaksson H, Wilson W, Donkelaar CCV (2006) Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39:1507–1516. doi:10.1016/j.jbiomech.2005.01.037

    Article  PubMed  Google Scholar 

  112. Isaksson H, Donkelaar CCV, Huiskes R, Ito K (2006) Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J Orthop Res 24:898–907. doi:10.1002/jor.20118

    Article  PubMed  Google Scholar 

  113. Wehner T, Steiner M, Ignatius A, Claes L (2014) Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies—a numerical study. PLoS One 9:e115695. doi:10.1371/journal.pone.0115695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Spector AA, Grayson WL (2017) Stem cell fate decision making: modeling approaches. ACS Biomater Sci Eng. doi:10.1021/acsbiomaterials.6b00606

  115. Gabbay JS, Zuk PA, Tahernia A, Askari M, O’Hara CM, Karthikeyan T, Azari K, Hollinger JO, Bradley JP (2006) In vitro microdistraction of preosteoblasts: distraction promotes proliferation and oscillation promotes differentiation. Tissue Eng 12:3055–3066. doi:10.1089/ten.2006.12.3055

    Article  CAS  PubMed  Google Scholar 

  116. Kasper G, Dankert N, Tuischer J, Hoeft M, Gaber T, Glaeser JD, Zander D, Tschirschmann M, Thompson M, Matziolis G, Duda GN (2007) Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells 25:903–910. doi:10.1634/stemcells.2006-0432

    Article  CAS  PubMed  Google Scholar 

  117. Weinand C, Pomerantseva I, Neville CM, Gupta R, Weinberg E, Madisch I, Shapiro F, Abukawa H, Troulis MJ, Vacanti JP (2006) Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone. Bone 38:555–563. doi:10.1016/j.bone.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  118. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495. doi:10.1016/S1534-5807(04)00075-9

    Article  CAS  PubMed  Google Scholar 

  119. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci U S A 102:11594–11599. doi:10.1073/pnas.0502575102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kalpakcioglu BB, Morshed S, Engelke K, Genant HK (2008) Advanced imaging of bone macrostructure and microstructure in bone fragility and fracture repair. J Bone Joint Surg Am Vol 90A:68–78. doi:10.2106/jbjs.g.01506

    Article  Google Scholar 

  121. Augat P, Morgan EF, Lujan TJ, MacGillivray TJ, Cheung WH (2014) Imaging techniques for the assessment of fracture repair. Injury-Int J Care Inj 45:16–22. doi:10.1016/j.injury.2014.04.004

    Article  Google Scholar 

  122. Vetter A, Witt F, Sander O, Duda GN, Weinkamer R (2012) The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobiol 11:147–160. doi:10.1007/s10237-011-0299-x

    Article  CAS  PubMed  Google Scholar 

  123. Repp F, Vetter A, Duda GN, Weinkamer R (2015) The connection between cellular mechanoregulation and tissue patterns during bone healing. Med Biol Eng Comput 53:829–842. doi:10.1007/s11517-015-1285-8

    Article  PubMed  Google Scholar 

  124. Isaksson H, van Donkelaar CC, Huiskes R, Yao J, Ito K (2008) Determining the most important cellular characteristics for fracture healing using design of experiments methods. J Theor Biol 255:26–39. doi:10.1016/j.jtbi.2008.07.037

    Article  PubMed  Google Scholar 

  125. Isaksson H, van Donkelaar CC, Ito K (2009) Sensitivity of tissue differentiation and bone healing predictions to tissue properties. J Biomech 42:555–564. doi:10.1016/j.jbiomech.2009.01.001

    Article  PubMed  Google Scholar 

  126. Jacobs CR, Kelly DJ (2013) Cell mechanics: the role of simulation. In: Fernandes PR, Bartolo PJ (eds) Advances on Modeling in Tissue Engineering. Springer-Verlag, Heidelberg, pp 1–14

    Google Scholar 

  127. Bigham-Sadegh A, Oryan A (2015) Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res 56:175–194. doi:10.3109/03008207.2015.1027341

    Article  CAS  PubMed  Google Scholar 

  128. Geris L, Reed AAC, Vander Sloten J, Simpson A, Van Oosterwyck H (2010) Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput Biol 6:e1000915. doi:10.1371/journal.pcbi.1000915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Boccaccio A, Ballini A, Pappalettere C, Tullo D, Cantore S, Desiate A (2011) Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci 7:112–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Boccaccio A, Uva AE, Fiorentino M, Lamberti L, Monno G (2016) A mechanobiology-based algorithm to optimize the microstructure geometry of bone tissue scaffolds. Int J Biol Sci 12:1–17. doi:10.7150/ijbs.13158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Boccaccio A, Uva AE, Fiorentino M, Mori G, Monno G, Meccanica D, Management M, Bari P (2016) Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach. PLoS One 11:e0146935. doi:10.1371/journal.pone.0146935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Carlier A, van Gastel N, Geris L, Carmeliet G, Van Oosterwyck H (2014) Size does matter: an integrative in vivo-in silico approach for the treatment of critical size bone defects. PLoS Comput Biol 10:e1003888. doi:10.1371/journal.pcbi.1003888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Checa S, Prendergast PJ (2010) Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J Biomech 43:961–968. doi:10.1016/j.jbiomech.2009.10.044

    Article  PubMed  Google Scholar 

  134. McDermott AM, Mason DE, Lin ASP, Guldberg RE, Boerckel JD (2016) Influence of structural load-bearing scaffolds on mechanical load- and BMP-2-mediated bone regeneration. J Mech Behav Biomed Mater 62:169–181. doi:10.1016/j.jmbbm.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  135. Moore SR, Saidel GM, Knothe U, Tate MLK (2014) Mechanistic, mathematical model to predict the dynamics of tissue genesis in bone defects via mechanical feedback and mediation of biochemical factors. PLoS Comput Biol 10:e1003604. doi:10.1371/journal.pcbi.1003604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ribeiro FO, Gomez-Benito MJ, Folgado J, Fernandes PR, Garcia-Aznar J (2015) In silico mechano-chemical model of bone healing for the regeneration of critical defects: the effect of BMP-2. PLos One 10:e0127722. doi:10.1371/journal.pone.0127722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSFC (No. 61572159), NCET (NCET-13-0756), and Distinguished Young Scientists Funds of Heilongjiang Province (JC201302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yang, N. & Wang, X. A review of computational models of bone fracture healing. Med Biol Eng Comput 55, 1895–1914 (2017). https://doi.org/10.1007/s11517-017-1701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1701-3

Keywords

Navigation