Skip to main content
Log in

Effects of location and extent of spine clustering on synaptic integration in striatal medium spiny neurons—a computational study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The nucleus accumbens (NAc) is known widely for its role in the reward circuit, which is dysregulated in a number of psychological disorders. Recent evidence also suggests the contribution of this structure in spatial and gustatory memories. Because of its role in different types of memories, similar to the hippocampus, we assumed the formation of spine clusters, which are engrams of memory, to be present on dendrites of medium spiny neurons (MSNs). We found that the activation of clustered inputs resulted in sublinear summation when clusters were present on the same branch and also when inputs were distributed on different branches. The size, as well as the location of clusters, was found to affect the summation. With an increase in cluster size and distance from soma, the summation was increasingly sublinear. When the temporal integration window was measured for clustered spines, it was found to be narrower as compared to that for a single spine. Also, distally located clusters resulted in a wider temporal window, as compared to proximal clusters. Our results suggest that depending on the location of clusters, the modes of integration will differ in MSNs possessing clustered spines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ash RT, Buffington SA, Park J, Costa-Mattioli M, Zoghbi HY Smirnakis SM (2017) Excessive ERK-dependent synaptic clustering with enhanced motor learning in the MECP2 duplication syndrome mouse model of autism. bioRxiv 100875.

  2. Barinaga M (1999) New clues to how neurons strengthen their connections. Science 284(5421):1755–1757. https://doi.org/10.1126/science.284.5421.1755

    Article  PubMed  CAS  Google Scholar 

  3. Brown KM, Gillette TA, Ascoli GA (2008) Quantifying neuronal size: summing up trees and splitting the branch difference. In Seminars in cell & developmental biology (Vol. 19, No. 6, pp. 485-493). Academic Press

  4. Carnevale NT, Hines ML (2009) The NEURON book. Cambridge University Press

  5. Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44(3):483–493. https://doi.org/10.1016/j.neuron.2004.10.013

    Article  PubMed  CAS  Google Scholar 

  6. Carter AG, Soler-Llavina GJ, Sabatini BL (2007) Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J Neurosci 27(33):8967–8977. https://doi.org/10.1523/JNEUROSCI.2798-07.2007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22(2):383–394. https://doi.org/10.1016/S0896-6273(00)81098-3

    Article  PubMed  CAS  Google Scholar 

  8. Caze RD, Foust AJ, Clopath C, Schultz SR (2016) On the distribution and function of synaptic clusters. bioRxiv 029330

  9. Cazé RD, Jarvis S, Foust AJ, Schultz SR (2017) Dendrites enable a robust mechanism for neuronal stimulus selectivity. Neural Computation

  10. Damodaran S, Evans RC, Blackwell KT (2014) Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol 111(4):836–848. https://doi.org/10.1152/jn.00382.2013

    Article  PubMed  Google Scholar 

  11. Dichter GS, Damiano CA, Allen JA (2012) Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 4(1):1

    Article  Google Scholar 

  12. Dos Santos M, Salery M, Forget B, Perez MAG, Betuing S, Boudier T, ... & Heck N (2017) Rapid synaptogenesis in the nucleus accumbens is induced by a single cocaine administration and stabilized by mitogen-activated protein kinase interacting kinase-1 activity. Biol Psychiatry

  13. Druckmann S, Feng L, Lee B, Yook C, Zhao T, Magee JC, Kim J (2014) Structured synaptic connectivity between hippocampal regions. Neuron 81(3):629–640. https://doi.org/10.1016/j.neuron.2013.11.026

    Article  PubMed  CAS  Google Scholar 

  14. Evans RC, Morera-Herreras T, Cui Y, Du K, Sheehan T, Kotaleski JH, Venance L, Blackwell KT (2012) The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons. PLoS Comput Biol 8(4):e1002493. https://doi.org/10.1371/journal.pcbi.1002493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fu M, Yu X, Lu J, Zuo Y (2012) Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483(7387):92–95. https://doi.org/10.1038/nature10844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fujiyama F, Fritschy JM, Stephenson FA, Bolam JP (2000) Synaptic localization of GABAA receptor subunits in the striatum of the rat. J Comp Neurol 416(2):158–172. https://doi.org/10.1002/(SICI)1096-9861(20000110)416:2<158::AID-CNE3>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  17. Govindarajan A, Israely I, Huang SY, Tonegawa S (2011) The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69(1):132–146. https://doi.org/10.1016/j.neuron.2010.12.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Govindarajan A, Kelleher RJ, Tonegawa S (2006) A clustered plasticity model of long-term memory engrams. Nat Rev Neurosci 7(7):575–583. https://doi.org/10.1038/nrn1937

    Article  PubMed  CAS  Google Scholar 

  19. Hines ML, Carnevale NT (2006) The NEURON simulation environment. Neuron 9(6)

  20. Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Clarendon Press, Oxford, pp 225–260

    Google Scholar 

  21. Larkum ME, Nevian T (2008) Synaptic clustering by dendritic signalling mechanisms. Curr Opin Neurobiol 18(3):321–331. https://doi.org/10.1016/j.conb.2008.08.013

    Article  PubMed  CAS  Google Scholar 

  22. Lee KF, Soares C, Thivierge JP, Béïque JC (2016) Correlated synaptic inputs drive dendritic calcium amplification and cooperative plasticity during clustered synapse development. Neuron 89(4):784–799. https://doi.org/10.1016/j.neuron.2016.01.012

    Article  PubMed  CAS  Google Scholar 

  23. Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613–7624

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Makino H, Malinow R (2011) Compartmentalized versus global synaptic plasticity on dendrites controlled by experience. Neuron 72(6):1001–1011. https://doi.org/10.1016/j.neuron.2011.09.036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Matsuno H, Okabe S, Mishina M, Yanagida T, Mori K, Yoshihara Y (2006) Telencephalin slows spine maturation. J Neurosci 26(6):1776–1786. https://doi.org/10.1523/JNEUROSCI.2651-05.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766. https://doi.org/10.1038/nature02617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mattioni M, Le Novère N (2013) Integration of biochemical and electrical signaling multiscale model of the medium spiny neuron of the striatum. PloS One 8(7):e66811.S

    Article  CAS  Google Scholar 

  28. Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3(5):362

    Article  PubMed  CAS  Google Scholar 

  29. Migliore M, Messineo L, Ferrante M (2004) Dendritic I h selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons. J Comput Neurosci 16(1):5–13. https://doi.org/10.1023/B:JCNS.0000004837.81595.b0

    Article  PubMed  CAS  Google Scholar 

  30. Moyer JT, Wolf JA, Finkel LH (2007) Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J Neurophysiol 98(6):3731–3748. https://doi.org/10.1152/jn.00335.2007

    Article  PubMed  CAS  Google Scholar 

  31. O’Donnell PO, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15(5 Pt 1):3622–3639

    Article  PubMed  PubMed Central  Google Scholar 

  32. O'Donnell P, Grace AA (1993) Physiological and morphological properties of accumbens core and shell neurons recorded in vitro. Synapse 13(2):135–160. https://doi.org/10.1002/syn.890130206

    Article  PubMed  CAS  Google Scholar 

  33. Pedroza-Llinas R, Ramirez-Lugo L, Guzman-Ramos K, Zavala-Vega S, Bermudez-Rattoni F (2009) Safe taste memory consolidation is disrupted by a protein synthesis inhibitor in the nucleus accumbens shell. Neurobiol Learn Mem 92(1):45–52. https://doi.org/10.1016/j.nlm.2009.02.011

    Article  PubMed  CAS  Google Scholar 

  34. Poirazi P, Brannon T, Mel BW (2003) Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37(6):977–987. https://doi.org/10.1016/S0896-6273(03)00148-X

    Article  PubMed  CAS  Google Scholar 

  35. Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7(6):621–627. https://doi.org/10.1038/nn1253

    Article  PubMed  CAS  Google Scholar 

  36. Rane M, Manchanda R (2015) Computational investigation of location dependent effect of clustered spines on integration in striatal medium spiny neurons. Cognition, Brain and Computation. http://cogs.iitgn.ac.in/wp-content/uploads/2015/10/accepted.html (accessed 7-12-2016). Abstract

  37. Renteria R, Jeanes ZM, Mangieri RA, Maier EY, Kircher DM, Buske TR, Morrisett RA (2016) Chapter fourteen—using in vitro electrophysiology to screen medications: accumbal plasticity as an engram of alcohol dependence. Int Rev Neurobiol 126:441–465. https://doi.org/10.1016/bs.irn.2016.02.018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Rinaldi A, Oliverio A, Mele A (2012) Spatial memory, plasticity and nucleus accumbens. Rev Neurosci 23(5–6):527–541. https://doi.org/10.1515/revneuro-2012-0070

    Article  PubMed  CAS  Google Scholar 

  39. Rogerson T, Cai D, Frank A, Sano Y, Shobe J, Aranda ML, Silva AJ (2014) Synaptic tagging during memory allocation. Nat Rev Neurosci 15(3):157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Segev I, Burke RE (1998) Compartmental models of complex neurons. In: Koch C, Segev I (eds) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT Press, Cambridge, pp 93–136

    Google Scholar 

  41. Shen H, Sesack SR, Toda S, Kalivas PW (2008) Automated quantification of dendritic spine density and spine head diameter in medium spiny neurons of the nucleus accumbens. Brain Struct Funct 213(1–2):149–157. https://doi.org/10.1007/s00429-008-0184-2

    Article  PubMed  Google Scholar 

  42. Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci 99(16):10831–10836. https://doi.org/10.1073/pnas.152343099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Steephen JE, Manchanda R (2009) Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents. J Comput Neurosci 27(3):453–470. https://doi.org/10.1007/s10827-009-0161-7

    Article  PubMed  Google Scholar 

  44. Takahashi N, Kitamura K, Matsuo N, Mayford M, Kano M, Matsuki N, Ikegaya Y (2012) Locally synchronized synaptic inputs. Science 335(6066):353–356. https://doi.org/10.1126/science.1210362

    Article  PubMed  CAS  Google Scholar 

  45. Urban NN, Barrionuevo G (1998) Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc Natl Acad Sci 95(19):11450–11455. https://doi.org/10.1073/pnas.95.19.11450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Weber JP, Andrásfalvy BK, Polito M, Magó Á, Ujfalussy BB, Makara JK (2016) Location-dependent synaptic plasticity rules by dendritic spine cooperativity. Nat Commun 7. https://doi.org/10.1038/ncomms11380

  47. Wilson CJ (1993) The generation of natural firing patterns in neostriatal neurons. Prog Brain Res 99:277–297. https://doi.org/10.1016/S0079-6123(08)61352-7

    Article  PubMed  CAS  Google Scholar 

  48. Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O’Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 25(40):9080–9095. https://doi.org/10.1523/JNEUROSCI.2220-05.2005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Yadav A, Gao YZ, Rodriguez A, Dickstein DL, Wearne SL, Luebke JI, Hof PR, Weaver CM (2012) Morphologic evidence for spatially clustered spines in apical dendrites of monkey neocortical pyramidal cells. J Comp Neurol 520(13):2888–2902. https://doi.org/10.1002/cne.23070

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yuste R (2011) Dendritic spines and distributed circuits. Neuron 71(5):772–781. https://doi.org/10.1016/j.neuron.2011.07.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

We would like to thank the Department of Biotechnology, Govt. of India, for their support for this project work (project no. BT/PR12973/MED/122/47/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrunal Rane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rane, M., Manchanda, R. Effects of location and extent of spine clustering on synaptic integration in striatal medium spiny neurons—a computational study. Med Biol Eng Comput 56, 1173–1187 (2018). https://doi.org/10.1007/s11517-017-1760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1760-5

Keywords

Navigation