Skip to main content

Advertisement

Log in

A time local subset feature selection for prediction of sudden cardiac death from ECG signal

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Prediction of sudden cardiac death continues to gain universal attention as a promising approach to saving millions of lives threatened by sudden cardiac death (SCD). This study attempts to promote the literature from mere feature extraction analysis to developing strategies for manipulating the extracted features to target improvement of classification accuracy. To this end, a novel approach to local feature subset selection is applied using meticulous methodologies developed in previous studies of this team for extracting features from non-linear, time-frequency, and classical processes. We are therefore enabled to select features that differ from one another in each 1-min interval before the incident. Using the proposed algorithm, SCD can be predicted 12 min before the onset; thus, more propitious results are achieved. Additionally, through defining a utility function and employing statistical analysis, the alarm threshold has effectively been determined as 83%. Having selected the best combination of features, the two classes are classified using the multilayer perceptron (MLP) classifier. The most effective features would subsequently be discussed considering their prevalence in the rank-based selection. The results indicate the significant capacity of the proposed method for predicting SCD as well as selecting the appropriate processing method at any time before the incident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tamil EBM, Kamarudin N, Salleh R, Tamil AM. A review on feature extraction & classification techniques for biosignal processing (Part I: Electrocardiogram); 2008. Springer. pp. 107–112

  2. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S et al (2010) Heart disease and stroke statistics—2010 update. A report from the American Heart Association. Circulation 121(7):e46–e215. https://doi.org/10.1161/CIRCULATIONAHA.109.192667

    Article  PubMed  Google Scholar 

  3. Kong MH, Fonarow GC, Peterson ED, Curtis AB, Hernandez AF, Sanders GD, Thomas KL, Hayes DL, SM a-K (2011) Systematic review of the incidence of sudden cardiac death in the United States. J Am Coll Cardiol 57(7):794–801. https://doi.org/10.1016/j.jacc.2010.09.064

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pagidipati NJ, Gaziano TA (2013) Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 127(6):749–756. https://doi.org/10.1161/CIRCULATIONAHA.112.128413

    Article  PubMed  PubMed Central  Google Scholar 

  5. Passman R, Goldberger JJ (2012) Predicting the future risk stratification for sudden cardiac death in patients with left ventricular dysfunction. Circulation 125(24):3031–3037. https://doi.org/10.1161/CIRCULATIONAHA.111.023879

    Article  PubMed  Google Scholar 

  6. Huikuri HV, Castellanos A, Myerburg RJ (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345(20):1473–1482. https://doi.org/10.1056/NEJMra000650

    Article  PubMed  CAS  Google Scholar 

  7. Wever E, Hauer R, Oomen A, Peters R, Bakker P et al (1993) Unfavorable outcome in patients with primary electrical disease who survived an episode of ventricular fibrillation. Circulation 88(3):1021–1029. https://doi.org/10.1161/01.CIR.88.3.1021

    Article  PubMed  CAS  Google Scholar 

  8. Zipes DP, Wellens HJ (1998) Sudden cardiac death. Circulation 98(21):2334–2351. https://doi.org/10.1161/01.CIR.98.21.2334

    Article  PubMed  CAS  Google Scholar 

  9. Priori SG (1997) Survivors of out-of-hospital cardiac arrest with apparently normal heart. Circulation 95:265–272

    Article  Google Scholar 

  10. Chugh SS, Kelly KL, Titus JL (2000) Sudden cardiac death with apparently normal heart. Circulation 102(6):649–654. https://doi.org/10.1161/01.CIR.102.6.649

    Article  PubMed  CAS  Google Scholar 

  11. Chugh SS (2001) Sudden cardiac death with apparently normal heart. Card Electrophysiol Rev 5(4):394–402. https://doi.org/10.1023/A:1013254132689

    Article  Google Scholar 

  12. Shen TW, Shen H-P, Lin CH, Ou YL. Detection and prediction of sudden cardiac death (SCD) for personal healthcare; 2007. IEEE. pp. 2575–2578. https://doi.org/10.1109/IEMBS.2007.4352855

  13. Smith WM (1997) Cardiac defibrillation. IEEE-EMBC and CMBEC: 249–250

  14. Myerburg RJ (1992) Cardiac arrest and sudden cardiac death. Heart disease, a textbook of cardiovascular. Medicine 1:756–789

    Google Scholar 

  15. Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, Aufderheide TP, Rea T, Lowe R, Brown T, Dreyer J, Davis D, Idris A, Stiell I, Resuscitation Outcomes Consortium Investigators (2008) Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 300(12):1423–1431. https://doi.org/10.1001/jama.300.12.1423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fishman GI, Chugh SS, DiMarco JP, Albert CM, Anderson ME, Bonow RO, Buxton AE, Chen PS, Estes M, Jouven X, Kwong R, Lathrop DA, Mascette AM, Nerbonne JM, O’Rourke B, Page RL, Roden DM, Rosenbaum DS, Sotoodehnia N, Trayanova NA, Zheng ZJ (2010) Sudden cardiac death prediction and prevention report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society workshop. Circulation 122(22):2335–2348. https://doi.org/10.1161/CIRCULATIONAHA.110.976092

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jones JL, Tovar OH (1996) The mechanism of defibrillation and cardioversion. Proc IEEE 84(3):392–403. https://doi.org/10.1109/5.486742

    Article  Google Scholar 

  18. Lee H, Seo M, Joo S. Early prediction of ventricular tachyarrhythmias based on heart rate variability analysis; 2015. IEEE. pp. 1041–1044. https://doi.org/10.1109/CIC.2015.7411092

  19. Suszko AM, Dalvi R, Das M, Chauhan VS. Quantifying abnormal QRS peaks using a novel time-domain peak detection algorithm: application in patients with cardiomyopathy at risk of sudden death; 2015. IEEE. pp. 020–024. https://doi.org/10.1109/EIT.2015.7293317

  20. Imam MH, Karmakar C, Khandoker A, Palaniswami M. A novel technique for analysing beat-to-beat dynamical changes of QT-RR distribution for arrhythmia prediction; 2015. IEEE. pp. 1157–1160. https://doi.org/10.1109/CIC.2015.7411121

  21. Fang Z, Lai D, Ge X, Wu X. Successive ECG telemetry monitoring for preventing sudden cardiac death; 2009. IEEE. pp. 1738-1741. https://doi.org/10.1109/IEMBS.2009.5333088

  22. Huikuri HV, Tapanainen JM, Lindgren K, Raatikainen P, Mäkikallio TH, Juhani Airaksinen KE, Myerburg RJ (2003) Prediction of sudden cardiac death after myocardial infarction in the beta-blocking era. J Am Coll Cardiol 42(4):652–658. https://doi.org/10.1016/S0735-1097(03)00783-6

    Article  PubMed  Google Scholar 

  23. Acharya UR, Fujita H, Sudarshan VK, Sree VS, Eugene LWJ, Ghista DN, Tan RS (2015) An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features. Knowl-Based Syst 83:149–158. https://doi.org/10.1016/j.knosys.2015.03.015

    Article  Google Scholar 

  24. Al-Khatib SM, Sanders GD, Bigger JT, Buxton AE, Califf RM, Carlson M, Curtis A, Curtis J, Fain E, Gersh BJ, Gold MR, Haghighi-Mood A, Hammill SC, Healey J, Hlatky M, Hohnloser S, Kim RJ, Lee K, Mark D, Mianulli M, Mitchell B, Prystowsky EN, Smith J, Steinhaus D, Zareba W, Expert panel participating in a Duke’s Center for the Prevention of Sudden Cardiac Death conference (2007) Preventing tomorrow’s sudden cardiac death today: part I: current data on risk stratification for sudden cardiac death. Am Heart J 153(6):941–950. https://doi.org/10.1016/j.ahj.2007.03.003

    Article  PubMed  Google Scholar 

  25. Kuck K-H, Cappato R, Siebels J, Rüppel R, Investigators C (2000) Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest the Cardiac Arrest Study Hamburg (CASH). Circulation 102(7):748–754. https://doi.org/10.1161/01.CIR.102.7.748

    Article  PubMed  CAS  Google Scholar 

  26. Braunschweig F, Boriani G, Bauer A, Hatala R, Herrmann-Lingen C, Kautzner J, Pedersen SS, Pehrson S, Ricci R, Schalij MJ (2010) Management of patients receiving implantable cardiac defibrillator shocks. Europace 12(12):1673–1690. https://doi.org/10.1093/europace/euq316

    Article  PubMed  Google Scholar 

  27. Lombardi F, Mäkikallio TH, Myerburg RJ, Huikuri HV (2001) Sudden cardiac death: role of heart rate variability to identify patients at risk. Cardiovasc Res 50(2):210–217. https://doi.org/10.1016/S0008-6363(01)00221-8

    Article  PubMed  CAS  Google Scholar 

  28. Huikuri HV, Mäkikallio TH, Raatikainen MP, Perkiömäki J, Castellanos A et al (2003) Prediction of sudden cardiac death appraisal of the studies and methods assessing the risk of sudden arrhythmic death. Circulation 108(1):110–115. https://doi.org/10.1161/01.CIR.0000077519.18416.43

    Article  PubMed  Google Scholar 

  29. Statters DJ, Malik M, Ward DE, CAMM A (1994) QT dispersion: problems of methodology and clinical significance. J Cardiovasc Electrophysiol 5(8):672–685. https://doi.org/10.1111/j.1540-8167.1994.tb01190.x

    Article  PubMed  CAS  Google Scholar 

  30. Ebrahimzadeh E, Pooyan M (2011) Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals. J Biomed Sci Eng 4(11):699–706. https://doi.org/10.4236/jbise.2011.411087

    Article  Google Scholar 

  31. Ebrahimzadeh E, Pooyan M (2013) Prediction of sudden cardiac death (SCD) using time-frequency analysis of ECG signals. Computational Intelligence Electr Eng 3:15–26

    Google Scholar 

  32. Ebrahimzadeh E, Pooyan M, Bijar A (2014) A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals. PLoS One 9(2):e81896. https://doi.org/10.1371/journal.pone.0081896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mirhoseini SR, JahedMotlagh MR, Pooyan M (2016) Improve accuracy of early detection sudden cardiac deaths (SCD) using decision forest and SVM. International Conference on Robotics and Artificial Intelligence (ICRAI), USA

  34. Acharya R, Kumar A, Bhat P, Lim C, Kannathal N et al (2004) Classification of cardiac abnormalities using heart rate signals. Medical Biological Engineering Computing 42:288–293

    Article  PubMed  CAS  Google Scholar 

  35. Malik M, Cardiology TFotESo (1996) the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  36. Kurths J, Voss A, Saparin P, Witt A, Kleiner H et al (1995) Quantitative analysis of heart rate variability. Chaos: An Interdisciplinary J Nonlinear Sci 5(1):88–94. https://doi.org/10.1063/1.166090

    Article  Google Scholar 

  37. VanHoogenhuyze D, Martin G, Weiss J, Schaad J, Singer D. Spectrum of heart rate variability; 1989. IEEE pp 65. https://doi.org/10.1109/CIC.1989.130482

  38. Ichimaru Y, Kodama Y, Yanaga T. Circadian changes of heart rate variability; 1988. IEEE. pp. 315–318. https://doi.org/10.1109/CIC.1988.72625

  39. Murukesan L, Murugappan M, Iqbal M, Saravanan K (2014) Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features. J Medical Imaging Health Informatics 4(4):521–532. https://doi.org/10.1166/jmihi.2014.1287

    Article  Google Scholar 

  40. Murukesan L, Murugappan M, Iqbal M. Sudden cardiac death prediction using ECG signal derivative (heart rate variability): a review; 2013. IEEE. pp. 269–274. https://doi.org/10.1109/CSPA.2013.6530054

  41. Siwindarto P, Wardana I, Indra MR, Widodo MA (2015) Sudden cardiac death prediction using Poincaré plot of RR interval differences (PORRID). Appl Math Sci 9:2515–2524

    Google Scholar 

  42. Manis G, Nikolopoulos S, Arsenos P, Gatzoulis K, Dilaveris P, et al. Risk stratification for arrhythmic sudden cardiac death in heart failure patients using machine learning techniques; 2013. IEEE. pp. 141–144

  43. Acharya UR, Fujita H, Sudarshan VK, Ghista DN, Lim WJE, et al. Automated prediction of sudden cardiac death risk using Kolmogorov complexity and recurrence quantification analysis features extracted from HRV signals; 2015. IEEE. pp. 1110–1115. https://doi.org/10.1109/SMC.2015.199

  44. Sheela CJ, Vanitha L. Prediction of sudden cardiac death using support vector machine; 2014. IEEE. pp. 377–381

  45. Vanitha L, Suresh G, JenefarSheela C. Sudden cardiac death prediction system using Hybrid classifier; 2014. IEEE. pp. 1–5. https://doi.org/10.1109/ECS.2014.6892677

  46. Casas M, Avitia R, Reyna M, Cárdenas A Evaluation of three machine learning algorithms as classifiers of premature ventricular contractions on ECG beats

  47. Arjmandi MK, Pooyan M, Mikail M, Vali M, Moqarehzadeh AR (2011) Identification of voice disorders using long-time features and support vector machine with different feature reduction methods. J Voice 25:275–289

    Article  Google Scholar 

  48. http://www.physionet.org/PhysioBank/Signal Archives/ ECG/Sudden Cardiac Death Holter Database

  49. http://www.physionet.org/PhysioBank/Signal Archives/ ECG/ Normal Sinus Rhythm database

  50. Ebrahimzadeh E, Pooyan M, Jahani S, Bijar A, Setaredan SK (2015) ECG signals noise removal: selection and optimization of the best adaptive filtering algorithm based on various algorithms comparison. Biomedical eEngineering: aApplications, bBasis and. Biomedical Engineering: Applications, Basis Communications 27:1550038

    Google Scholar 

  51. Pola S, Macerata A, Emdin M, Marchesi C (1996) Estimation of the power spectral density in nonstationary cardiovascular time series: assessing the role of the time-frequency representations (TFR). IEEE Trans Biomed Eng 43(1):46–59. https://doi.org/10.1109/10.477700

    Article  PubMed  CAS  Google Scholar 

  52. Ebrahimzadeh E, Alavi SM, Bijar A, Pakkhesal A (2013) A novel approach for detection of deception using smoothed pseudo Wigner-Ville distribution (SPWVD). J Biomed Sci Eng 6(01):8–18. https://doi.org/10.4236/jbise.2013.61002

    Article  Google Scholar 

  53. Mainardi L, Montano N, Cerutti S (2004) Automatic decomposition of Wigner distribution and its application to heart rate variability. Methods Inf Med 43(1):17–21

    Article  PubMed  CAS  Google Scholar 

  54. Kamen PW, Krum H, Tonkin AM (1996) Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin Sci (Lond) 91(2):201–208. https://doi.org/10.1042/cs0910201

    Article  CAS  Google Scholar 

  55. Brennan M, Palaniswami M, Kamen P (2001) Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 48(11):1342–1347. https://doi.org/10.1109/10.959330

    Article  PubMed  CAS  Google Scholar 

  56. Voss A, Schroeder R, Heitmann A, Peters A, Perz S (2015) Short-term heart rate variability—influence of gender and age in healthy subjects. PLoS One 10(3):e0118308. https://doi.org/10.1371/journal.pone.0118308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1):82–87. https://doi.org/10.1063/1.166141

    Article  PubMed  CAS  Google Scholar 

  58. Ashtiani M-HZ, Ahmadabadi MN, Araabi BN (2014) Bandit-based local feature subset selection. Neurocomputing 138:371–382. https://doi.org/10.1016/j.neucom.2014.02.001

    Article  Google Scholar 

  59. Arjmandi MK, Dilley L, Ireland Z (2017) Applying pattern recognition to formant trajectories: a useful tool for understanding African American English (AAE) dialect variation. J Acoustical Society Am 141(5):3980–3980. https://doi.org/10.1121/1.4989084

    Article  Google Scholar 

  60. Fujita H, Acharya UR, Sudarshan VK, Ghista DN, Sree SV, Eugene LWJ, Koh JEW (2016) Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl Soft Comput 43:510–519. https://doi.org/10.1016/j.asoc.2016.02.049

    Article  Google Scholar 

  61. Amoozegar S, Pooyan M, Ebrahimzadeh E (2013) Classification of brain signals in normal subjects and patients with epilepsy using mixture of experts. Computational Intelligence in. Computational Intelligence Electr Eng 4:1–8

    Google Scholar 

Download references

Acknowledgements

We would like to show our gratitude to Ms. Farahnaz Fayaz (School of Electrical Engineering, Payam Noor University, Tehran, Iran) for sharing her pearls of wisdom with us during the course of this research and writing it. We are also immensely grateful to Dr. Morteza Zanganeh Soroush and Dr. Mohammad Hassan Zokaei Ashtiani for their comments on the earlier version of the manuscript, although any errors are of our own and should not tarnish the reputation of these esteemed persons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Ebrahimzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimzadeh, E., Manuchehri, M.S., Amoozegar, S. et al. A time local subset feature selection for prediction of sudden cardiac death from ECG signal. Med Biol Eng Comput 56, 1253–1270 (2018). https://doi.org/10.1007/s11517-017-1764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1764-1

Keywords

Navigation