Skip to main content
Log in

Design of a noninvasive and smart hand tremor attenuation system with active control: a simulation study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper presents the design and simulation of a handheld device for people with hand tremor, such as Parkinson’s and essential tremor patients. This device can be used as a pen for smartphones or as a spoon. The designed system includes two links, which are connected to two servomotors, which are mounted in orthogonal directions. To attenuate the effect of hand tremor on the tip of device, PID and computed torque methods are used to actively control the system. These controllers are used to control the rotation of the motors for moving the links in opposite directions of the hand tremor. Performance of the device with mentioned controllers is studied for different applications and finally, the results of both controllers are discussed and compared. Based on the presented results in this study, the designed device is able to suppress the hand tremor up to 75% during eating and 65% during following a spiral pattern.

Design of a noninvasive and smart hand tremor attenuation system: a simulation study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baker MG, Graham L (2004) The journey: Parkinson’s disease. BMJ 329(7466):611–614. https://doi.org/10.1136/bmj.329.7466.611

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bhidayasiri R (2005) Differential diagnosis of common tremor syndromes. Postgrad Med J 81(962):756–762. https://doi.org/10.1136/pgmj.2005.032979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bó APL, Poignet P (2010) Tremor attenuation using FES-based joint stiffness control. In: Robotics and Automation (ICRA), 2010 I.E. International Conference on, 2010. IEEE, pp 2928–2933

  4. Buki E, Katz R, Zacksenhouse M, Schlesinger I (2017) Vib-bracelet: a passive absorber for attenuating forearm tremor. Med Biol Eng Comp. https://doi.org/10.1007/s11517-017-1742-7

  5. Case D, Taheri B, Richer E (2013) Design and characterization of a small-scale magnetorheological damper for tremor suppression. IEEE/ASME Trans Mechatronics 18(1):96–103. https://doi.org/10.1109/TMECH.2011.2151204

    Article  Google Scholar 

  6. Crawford P, Zimmerman EE (2011) Differentiation and diagnosis of tremor. Am Fam Physician 83:697

    PubMed  Google Scholar 

  7. Dahlin-Webb SR (1986) A weighted wrist cuff. Am J Occup Ther 40(5):363–364. https://doi.org/10.5014/ajot.40.5.363

    Article  PubMed  CAS  Google Scholar 

  8. Deuschl G, Bain P, Brin M (1998) Consensus statement of the Movement Disorder Society on tremor. Ad Hoc Scientific Committee. Mov Disord 13(Suppl 3):2–23

    PubMed  Google Scholar 

  9. Hall WD (1991) Hand-held gyroscopic device. US Patent 5,058,571, 22 Oct, 1991

  10. Hashemi SM, Golnaraghi MF, Patla AE (2004) Tuned vibration absorber for suppression of rest tremor in Parkinson’s disease. Med Biol Eng Comput 42(1):61–70. https://doi.org/10.1007/bf02351012

    Article  PubMed  CAS  Google Scholar 

  11. Herrnstadt G, Menon C (2016) Voluntary-driven elbow orthosis with speed-controlled tremor suppression. Front Bioeng Biotechnol 4:29–38. https://doi.org/10.3389/fbioe.2016.00029

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huen D, Liu J, Lo B (2016) An integrated wearable robot for tremor suppression with context aware sensing. In: 2016 I.E. 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE, pp 312–317

  13. Kotovsky J, Rosen MJ (1998) A wearable tremor-suppression orthosis. J Rehabil Res Dev 35:373

    PubMed  CAS  Google Scholar 

  14. Louis ED, Ottman R (2014) How many people in the USA have essential tremor? Deriving a population estimate based on epidemiological data. Tremor Other Hyperkinet Mov 4:259. https://doi.org/10.7916/D8TT4P4B

    Article  Google Scholar 

  15. Markiewicz BR (1973) Analysis of the computed-torqae drive method and comparision with the conventional position servo for a computer-controlled manipulator. Technical Memorandum 33–601, Jet Propulsion Laboratory, Pasadena

  16. Memedi M, Sadikov A, Groznik V, Žabkar J, Možina M, Bergquist F, Johansson A, Haubenberger D, Nyholm D (2015) Automatic spiral analysis for objective assessment of motor symptoms in Parkinson’s disease. Sensors 15(9):23727–23744. https://doi.org/10.3390/s150923727

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mojica JW, Kumagai A, Marsh S (2013) Vibration suppression drafting arm for tremor patients. In: ASME 2013 International Mechanical Engineering Congress and Exposition, 2013. American Society of Mechanical Engineers, pp V015T016A008-V015T016A008

  18. Niazmand K, Tonn K, Kalaras A, Fietzek UM, Mehrkens J-H, Lueth TC (2011) Quantitative evaluation of Parkinson’s disease using sensor based smart glove. In: Computer-Based Medical Systems (CBMS), 2011 24th International Symposium on, 2011 IEEE, pp 1–8

  19. Ohara E, Yano Ki, Horihata S, Aoki T, Nishimoto Y (2009) Tremor suppression control of meal-assist robot with adaptive filter. In: 2009 I.E. International Conference on Rehabilitation Robotics, 2009. IEEE, pp 498–503

  20. Ou C, Gouldstone A, Jaeger BK, Sipahi R (2015) Control design for a hand tremor suppression pen. In: ASME 2015 Dynamic Systems and Control Conference, 2015. American Society of Mechanical Engineers, pp V002T036A006-V002T036A006

  21. Pahwa R, Lyons KE (2007) Handbook of Parkinson’s disease. CRC Press, Boca Raton

    Google Scholar 

  22. Pathak A, Redmond JA, Allen M, Chou KL (2014) A noninvasive handheld assistive device to accommodate essential tremor: a pilot study. Mov Disord 29(6):838–842. https://doi.org/10.1002/mds.25796

    Article  PubMed  Google Scholar 

  23. Pierleoni P, Palma L, Belli A, Pernini L (2014) A real-time system to aid clinical classification and quantification of tremor in Parkinson’s disease. In: Biomedical and Health Informatics (BHI), 2014 IEEE-EMBS International Conference on, 2014 IEEE, pp 113–116

  24. Popović Maneski L, Jorgovanović N, Ilić V, Došen S, Keller T, Popović MB, Popović DB (2011) Electrical stimulation for the suppression of pathological tremor. Med Biol Eng Comput 49(10):1187–1193. https://doi.org/10.1007/s11517-011-0803-6

    Article  PubMed  Google Scholar 

  25. Rahnavard M, Hashemi M, Farahmand F, Dizaji AF (2014) Designing a hand rest tremor dynamic vibration absorber using H2 optimization method. J Mech Sci Technol 28(5):1609–1614. https://doi.org/10.1007/s12206-014-0104-8

    Article  Google Scholar 

  26. Rissanen SM, Kankaanpää M, Meigal A, Tarvainen MP, Nuutinen J, Tarkka IM, Airaksinen O, Karjalainen PA (2008) Surface EMG and acceleration signals in Parkinson’s disease: feature extraction and cluster analysis. Med Biol Eng Comput 46(9):849–858. https://doi.org/10.1007/s11517-008-0369-0

    Article  PubMed  Google Scholar 

  27. Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL (2007) Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng 15(3):367–378. https://doi.org/10.1109/TNSRE.2007.903917

    Article  PubMed  CAS  Google Scholar 

  28. Rocon E, Gallego J, Barrios L, Victoria A, Ibanez J, Farina D, Negro F, Dideriksen JL, Conforto S, D'Alessio T (2010) Multimodal BCI-mediated FES suppression of pathological tremor. In: 2010 annual international conference of the IEEE engineering in medicine and biology, 2010. IEEE, pp 3337–3340

  29. Rosen MJ, Arnold AS, Baiges IJ, Aisen ML, Eglowstein SR (1995) Design of a controlled-energy-dissipation orthosis (CEDO) for functional suppression of intention tremors. J Rehabil Res Dev 32:1

    PubMed  CAS  Google Scholar 

  30. Salarian A, Russmann H, Wider C, Burkhard PR, Vingerhoets FJ, Aminian K (2007) Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng 54(2):313–322. https://doi.org/10.1109/TBME.2006.886670

    Article  PubMed  Google Scholar 

  31. Taheri B, Case D, Richer E (2014) Robust controller for tremor suppression at musculoskeletal level in human wrist. IEEE Trans Neural Syst Rehabil Eng 22(2):379–388. https://doi.org/10.1109/TNSRE.2013.2295034

    Article  PubMed  Google Scholar 

  32. Teixeira CJ, Bicho E, Rocha LA, Gago MF (2013) A self-tunable dynamic vibration absorber: Parkinson’s disease’s tremor suppression. In: Bioengineering (ENBENG), 2013 I.E. 3rd Portuguese Meeting in, 20–23 Feb. 2013 2013. pp 1–6. https://doi.org/10.1109/ENBENG.2013.6518440

  33. Wang H, Yu Q, Kurtis MM, Floyd AG, Smith WA, Pullman SL (2008) Spiral analysis—improved clinical utility with center detection. J Neurosci Methods 171(2):264–270. https://doi.org/10.1016/j.jneumeth.2008.03.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref Afsharfard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Afsharfard, A., Arasteh, R. et al. Design of a noninvasive and smart hand tremor attenuation system with active control: a simulation study. Med Biol Eng Comput 56, 1315–1324 (2018). https://doi.org/10.1007/s11517-017-1769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1769-9

Keywords

Navigation