Skip to main content
Log in

An exudate detection method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The present paper aims at presenting the methodology and first results of a detection system of risk of diabetic macular edema (DME) in fundus images. The system is based on the detection of retinal exudates (Ex), whose presence in the image is clinically used for an early diagnosis of the disease. To do so, the system applies digital image processing algorithms to the retinal image in order to obtain a set of candidate regions to be Ex, which are validated by means of feature extraction and supervised classification techniques. The diagnoses provided by the system on 1058 retinographies of 529 diabetic patients at risk of having DME show that the system can operate at a level of sensitivity comparable to that of ophthalmological specialists: it achieved 0.9000 sensitivity per patient against 0.7733, 0.9133 and 0.9000 of several specialists, where the false negatives were mild clinical cases of the disease. In addition, the level of specificity reached by the system was 0.6939, high enough to screen about 70% of the patients with no evidence of DME. These values show that the system fulfils the requirements for its possible integration into a complete diabetic retinopathy pre-screening tool for the automated management of patients within a screening programme.

Diagnosis system of risk of diabetic macular edema (DME) based on exudate (Ex) detection in fundus images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbas Q, Fondon I, Sarmiento A, Jiménez S, Alemany P (2017) Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Comput 55(11):1959–1974. https://doi.org/10.1007/s11517-017-1638-6

    Article  PubMed  Google Scholar 

  2. Abràmoff MD, Niemeijer M, Suttorp-Schulten MSA, Viergever MA, Russell SR, van Ginneken B (2008) Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care 31(2):193–198. https://doi.org/10.2337/dc07-1312

    Article  PubMed  Google Scholar 

  3. Abràmoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, Massin P, Cochener B, Gain P, Tang L, Lamard M, Moga DC, Quellec G, Niemeijer M (2013) Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 131(3):351–357. https://doi.org/10.1001/jamaophthalmol.2013.1743

    Article  PubMed  Google Scholar 

  4. Ahmad Fadzil MH, Izhar LI, Nugroho H, Nugroho HA (2011) Analysis of retinal fundus images for grading of diabetic retinopathy severity. Med Biol Eng Comput 49(6):693–700. https://doi.org/10.1007/s11517-011-0734-2

    Article  PubMed  CAS  Google Scholar 

  5. Alshayeji M, Al-Roomi SA, Abed S (2017) Optic disc detection in retinal fundus images using gravitational law-based edge detection. Med Biol Eng Comput 55(6):935–948. https://doi.org/10.1007/s11517-016-1563-0

    Article  PubMed  Google Scholar 

  6. Aptel F, Denis P, Rouberol F, Thivolet C (2008) Screening of diabetic retinopathy: effect of field number and mydriasis on sensitivity and specificity of digital fundus photography. Diabetes Metab 34(3):290–293. https://doi.org/10.1016/j.diabet.2007.12.007

    Article  PubMed  CAS  Google Scholar 

  7. Diabetic Retinopathy Screening Services in Scotland (2003) Diabetic retinopathy screening: Annex e. Scottish diabetic retinopathy grading scheme. Available: http://www.scotland.gov.uk/publications/2003/07/17638/23088 (The Scottish Government Publications)

  8. Dupas B, Walter T, Erginay A, Ordonez R, Deb-Joardar N, Gain P, Klein JC, Massin P (2010) Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy. Diabetes Metab 36:213–220. https://doi.org/10.1016/j.diabet.2010.01.002

    Article  PubMed  CAS  Google Scholar 

  9. Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs an extension of the Modified Airlie House classification: ETDRS report number 10. Ophthalmology 98(5 Suppl.):786–06. https://doi.org/10.1016/S0161-6420(13)38012-9

    Article  Google Scholar 

  10. Foracchia M, Grisan E, Ruggeri A (2005) Luminosity and contrast normalization in retinal images. Med Image Anal 9(3):179–190. https://doi.org/10.1117/12.2217131

    Article  PubMed  Google Scholar 

  11. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) Blood vessel segmentation methodologies in retinal images—a survey. Comput Meth Programs Biomed 108 (1):407–433. https://doi.org/10.1016/j.cmpb.2012.03.009

    Article  CAS  Google Scholar 

  12. Ganesan K, Martis RJ, Acharya UR, Chua CK, Min LC, Ng E, Laude A (2014) Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images. Med Biol Eng Comput 52(8):663–672. https://doi.org/10.1007/s11517-014-1167-5

    Article  PubMed  Google Scholar 

  13. Garcia M, Sanchez C, Poza J, Lopez MI, Hornero R (2009) Detection of hard exudates in retinal images using a radial basis function classifier. Ann Biomed Eng 37(9):1448–1463. https://doi.org/10.1007/s10439-009-9707-0

    Article  PubMed  Google Scholar 

  14. Gegundez-Arias M, Ortega C, Garrido J, Ponte B, Alvarez F, Marin D (2016) Inter-observer reliability and agreement study on early diagnosis of diabetic retinopathy and diabetic macular edema risk. In: Bioinformatics and biod engineering. IWBBIO 2016, Springer, Lecture notes in bioinformatics, vol 9656, pp 369–379, DOI https://doi.org/10.1007/978-3-319-31744-1-33

  15. Gegundez-Arias ME, Marin D, Bravo JM, Suero A (2013) Locating the fovea center position in digital fundus images using thresholding and feature extraction techniques. Comput Med Imaging Graph 37(5–6):386–393. https://doi.org/10.1016/j.compmedimag.2013.06.002

    Article  PubMed  Google Scholar 

  16. Gegundez-Arias ME, Marin D, Ponte B, Alvarez F, Garrido J, Ortega C, Vasallo MJ, Bravo JM (2017) A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Comput Biol Med 88:100–109. https://doi.org/10.1016/j.compbiomed.2017.07.007

    Article  PubMed  Google Scholar 

  17. Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin KW, Chaum E (2012) Exudate-based diabetic macular detection in fundus images using publicly available data sets. Med Image Anal 16 (1):216–226. https://doi.org/10.1016/j.media.2011.07.004

    Article  PubMed  Google Scholar 

  18. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103(2):137–149. https://doi.org/10.1016/j.diabres.2013.11.002

    Article  PubMed  CAS  Google Scholar 

  19. Haleem MS, Han L, Van-Hemert J, Li B (2013) Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput Med Imaging Graph 37(7–8):581–96. https://doi.org/10.1016/j.compmedimag.2013.09.005

    Article  PubMed  Google Scholar 

  20. Ibrahim S, Chowriappa P, Dua S, Acharya UR, Noronha K, Bhandary S, Mugasa H (2015) Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier. Med Biol Eng Comput 53(12):1345–1360. https://doi.org/10.1007/s11517-015-1329-0

    Article  PubMed  Google Scholar 

  21. Issac A, Sarathi MP, Dutta MK (2015) An adaptive threshold based image processing technique for improved glaucoma detection and classification. Comput Meth Programs Biomed 122(2):108–120. https://doi.org/10.1016/j.cmpb.2015.08.002

    Article  Google Scholar 

  22. Klein BEK (2007) Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol 14 (4):179–183. https://doi.org/10.1080/09286580701396720

    Article  PubMed  Google Scholar 

  23. Köse C, Şevik U, Ikibaş C, Erdöl H (2012) Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images. Comput Meth Programs Biomed 107(2):274–293. https://doi.org/10.1016/j.cmpb.2011.06.007

    Article  Google Scholar 

  24. Marin D, Gegundez-Arias ME, Suero A, Bravo JM (2015) Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. IEEE Trans Med Imaging 118 (2):173–185. https://doi.org/10.1016/j.cmpb.2014.11.003

    Google Scholar 

  25. Massin P, Angioi-Duprez K, Bacin F, Cathelineau B, Cathelineau G, Chaine G, Coscas G, Flament J, Sahel J, Turut P, Guillausseau PJ, Gaudric A (1996) Detection, monitoring and treatment of diabetic retinopathy. Diabetes Metab 22:203–209

    PubMed  CAS  Google Scholar 

  26. Massin P, Angioi-Duprez K, Bacin F, Cathelineau B, Cathelineau G, Chaine G, Coscas G, Flament J, Sahel J, Turut P, Guillausseau PJ, Gaudric A (1997) Recommendations of the ALFEDIAM (French Association for the Study of Diabetes and Metabolic Diseases) for the screening and surveillance of diabetic retinopathy. J Fr Ophtalmol 20(4):302–310

    PubMed  CAS  Google Scholar 

  27. MESSIDOR TECHNO-VISION Project France (2004) MESSIDOR: digital retinal images. Available: http://messidor.crihan.fr/download-en.php (download images section)

  28. Mookiah MRK, Acharya UR, Chua CK, Lim CM, Ng EY, Laude A (2013) Computer-aided diagnosis of diabetic retinopathy: a review. Comput Biol Med 43:2136–2155. https://doi.org/10.1016/j.compbiomed.2013.10.007

    Article  PubMed  Google Scholar 

  29. Mookiah MRK, Acharya UR, Chandran V, Martis RJ, Tan JH, Koh JE, Chua CK, Tong L, Laude A (2015) Application of higher-order spectra for automated grading of diabetic maculopathy. Med Biol Eng Comput 53(12):1319–1331. https://doi.org/10.1007/s11517-015-1278-7

    Article  PubMed  Google Scholar 

  30. Muangnak N, Aimmanee P, Makhanov S (2017) Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis. Med Biol Eng Comput. https://doi.org/10.1007/s11517-017-1705-z

  31. Nayak J, Bhat PS, Acharya UR (2009) Automatic identification of diabetic maculopathy stages using fundus images. J Med Eng Technol 33(2):119–129. https://doi.org/10.1080/03091900701349602

    Article  PubMed  CAS  Google Scholar 

  32. Niemeijer M, Abràmoff MD, van Ginneken B (2009) Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans Med Imaging 28(5):775–785. https://doi.org/10.1109/TMI.2008.2012029

    Article  PubMed  Google Scholar 

  33. Pereira C, Gonçalves L, Ferreira M (2013) Optic disc detection in color fundus images using ant colony optimization. Med Biol Eng Comput 51(3):295–303. https://doi.org/10.1007/s11517-012-0994-5

    Article  PubMed  Google Scholar 

  34. Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, Prescott GJ, Sharp PF, Olson JA (2007) The efficacy of automated ”disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol 91:1512–1517. https://doi.org/10.1136/bjo.2007.119453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rahebi J, Hardalaç F (2016) A new approach to optic disc detection in human retinal images using the firefly algorithm. Med Biol Eng Comput 54(2-3):453–461. https://doi.org/10.1007/s11517-015-1330-7

    Article  PubMed  Google Scholar 

  36. Saleh MD, Eswaran C (2012) An automated decision-support system for non-proliferative diabetic retinopathy disease based on mas and has detection. Comput Meth Programs Biomed 108(1):186–196. https://doi.org/10.1016/j.cmpb.2012.03.004

    Article  Google Scholar 

  37. Salem SA, Salem NM, Nandi AK (2007) Segmentation of retinal blood vessels using a novel clustering algorithm (racal) with a partial supervision strategy. Med Biol Eng Comput 45(3):261–273. https://doi.org/10.1007/s11517-006-0141-2

    Article  PubMed  Google Scholar 

  38. Sender MJ, Bagur SM, Badia X, Maseras M, de la Puente ML, Foz M (2003) Cámara de retina no midríatica: estudio de coste-efectividad en la detección temprana de la retinopatía diabética. Med Clin 121 (12):446–452. https://doi.org/10.1157/13052791

    Article  Google Scholar 

  39. Singh A, Dutta MK, ParthaSarathi M, Uher V, Burget R (2016) Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Comput Meth Programs Biomed 124:108–120. https://doi.org/10.1016/j.cmpb.2015.10.010

    Article  Google Scholar 

  40. Tang L, Niemeijer M, Reinhardt JM, Garvin MK, Abràmoff MD (2013) Splat feature classification with application to retinal hemorrhage detection in fundus images. IEEE Trans Med Imaging 32 (2):364–375. https://doi.org/10.1109/TMI.2012.2227119

    Article  PubMed  Google Scholar 

  41. Usher D, Dumskyj M, Himaga M, Williamson T, Nussey S, Boyce J (2004) Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening. Diabet Med 21(1):84–90. https://doi.org/10.1046/j.1464-5491.2003.01085.x

    Article  PubMed  CAS  Google Scholar 

  42. Welikala RA, Dehmeshki J, Hoppe A, Tah V, Mann S, Williamson TH, Barman SA (2014) Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Comput Meth Programs Biomed 114(3):247–261. https://doi.org/10.1016/j.cmpb.2014.02.010

    Article  CAS  Google Scholar 

  43. Youssef D, Solouma NH (2012) Accurate detection of blood vessels improves the detection of exudates in color fundus images. Comput Meth Programs Biomed 108(3):1052–1061. https://doi.org/10.1016/j.cmpb.2012.06.006

    Article  Google Scholar 

Download references

Funding

This work was carried out as part of the Project “Automatic System for Early Diabetic Retinopathy Detection by Retinal Digital Images Analysis”, supported and funded by the Health Ministry of the Andalusian Regional Government (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Marin.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, D., Gegundez-Arias, M.E., Ponte, B. et al. An exudate detection method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification. Med Biol Eng Comput 56, 1379–1390 (2018). https://doi.org/10.1007/s11517-017-1771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1771-2

Keywords

Navigation