Skip to main content

Advertisement

Log in

Angular relational signature-based chest radiograph image view classification

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality.

Interpreting chest X-ray (CXR) through the angular relational signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. (2006) Improving the diagnosis and treatment of smear-negative pulmonary and extrapulmonary tuberculosis among adults and adolescents: recommendations for HIV-prevalent and resource-constrained settings. World Health Organization Geneva

  2. Arimura H, Katsuragawa S, Li Q, Ishida T, Doi K (2002) Development of a computerized method for identifying the posteroanterior and lateral views of chest radiographs by use of a template matching technique. Med Phys 29(7):1556–1561. https://doi.org/10.1118/1.1487426

    Article  PubMed  Google Scholar 

  3. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, inc., New York

    Google Scholar 

  4. Boone JM, Seshagiri S, Steiner RM (1992) Recognition of chest radiograph orientation for picture archiving and communications systems display using neural networks. J Digit Imaging 5(3):190–193. https://doi.org/10.1007/BF03167769

    Article  PubMed  CAS  Google Scholar 

  5. Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: ACM international conference on image and video retrieval, pp 401–408

  6. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  7. Dubois D, Jaulent M (1987) A general approach to parameter evaluation in fuzzy digital pictures. Pattern Recogn Lett 6:251–259

    Article  Google Scholar 

  8. Kao EF, Lee C, Jaw TS, Hsu JS, Liu GC (2006) Projection profile analysis for identifying different views of chest radiographs. Acad Radiol 13(4):518–525. https://doi.org/10.1016/j.acra.2006.01.009

    Article  PubMed  Google Scholar 

  9. Karargyris A, Siegelman J, Tzortzis D, Jaeger S, Candemir S, Xue Z, Santosh KC, Vajda S, Antani SK, Folio L, Thoma GR (2016) Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int J Comput Assist Radiol Surg 11(1):99–106. https://doi.org/10.1007/s11548-015-1242-x

    Article  PubMed  Google Scholar 

  10. Keerthi S, Shevade S, Bhattacharyya C, Murthy K (2001) Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput 13(3):637–649

    Article  Google Scholar 

  11. Krishnapuram R, Keller JM, Ma Y (1993) Quantitative analysis of properties and spatial relations of fuzzy image regions. IEEE Trans Fuzzy Syst 1(3):222–233. https://doi.org/10.1109/91.236554

    Article  Google Scholar 

  12. Lehmann TM, Güld MO, Keysers D, Schubert H, Kohnen M, Wein BB (2003) Determining the view of chest radiographs. J Digit Imaging 16(3):280–291. https://doi.org/10.1007/s10278-003-1655-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Matsakis P (1998) Structural spatial relations and image understanding. Ph.D. thesis, Universite de Toulouse III. https://doi.org/10.1007/978-3-642-14755-5

  14. Matsakis P, Wendling L (1999) A new way to represent the relative position between areal objects. IEEE Trans Pattern Anal Mach Intell 21(7):634–643

    Article  Google Scholar 

  15. Matsakis P, Wendling L, Ni J (2010) A general approach to the fuzzy modeling of spatial relationships. In: Methods for handling imperfect spatial information. https://doi.org/10.1007/978-3-642-14755-5_3, pp 49–74

  16. Pietka E, Huang HK (1992) Orientation correction for chest images. J Digit Imaging 5(3):185–189. https://doi.org/10.1007/BF03167768

    Article  PubMed  CAS  Google Scholar 

  17. Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf B, Burges C, Smola A (eds) Advances in kernel methods - support vector learning, MIT Press. http://research.microsoft.com/~jplatt/smo.html

  18. Platt JC (1999) Advances in kernel methods. chap. fast training of support vector machines using sequential minimal optimization. MIT Press, Cambridge, pp 185–208. http://dl.acm.org/citation.cfm?id=299094.299105

    Google Scholar 

  19. Santosh KC, Candemir S, Jäger S, Karargyris A, Antani SK, Thoma GR, Folio L (2015) Automatically detecting rotation in chest radiographs using principal rib-orientation measure for quality control. Int J Pattern Recognit Artif Intell 29(2). https://doi.org/10.1142/S0218001415570013

  20. Santosh KC, Vajda S, Antani S, Thoma GR (2016) Edge map analysis in chest X-rays for automatic pulmonary abnormality screening. Int J CARS :1–10. https://doi.org/10.1007/s11548-016-1359-6

  21. Santosh KC, Wendling L (2017) Automated chest X-ray image view classification using force histogram. Springer, Singapore, pp 333–342. https://doi.org/10.1007/978-981-10-4859-3_30

    Google Scholar 

  22. Schaefer-Prokop C, Neitzel U, Venema H, Uffmann M, Prokop M (2008) Digital chest radiography: an update on modern technology, dose containment and control of image quality. Eur Radiol 18(9):1818–1830

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wendling L, Tabbone S, Matsakis P (2002) Fast and robust recognition of orbit and sinus drawings using histograms of forces. Pattern Recogn Lett 23(14):1687–1693

    Article  Google Scholar 

  24. Xue Z, You D, Candemir S, Jaeger S, Antani SK, Long LR, Thoma GR (2015) Chest x-ray image view classification. In: 28Th IEEE international symposium on computer-based medical systems. https://doi.org/10.1109/CBMS.2015.49, pp 66–71

  25. You D, Antani SK, Demner-fushman D, Thoma GR (2014) A contour-based shape descriptor for biomedical image classification and retrieval. In: Coüasnon B, Ringger EK (eds) Document recognition and retrieval XXI, San Francisco, February 5-6, 2014. SPIE Proceedings, vol 9021, pp 90210L–90210L–12. SPIE. https://doi.org/10.1117/12.2042526

Download references

Acknowledgments

Authors would like to give thanks to Dr. Sameer Antani, staff scientist, Lister Hill National Center for Biomedical Communications (LHNCBC) for his advice and the dataset owned by the U.S. National Library of Medicine, National Institutes of Health (NIH), MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Santosh.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosh, K.C., Wendling, L. Angular relational signature-based chest radiograph image view classification. Med Biol Eng Comput 56, 1447–1458 (2018). https://doi.org/10.1007/s11517-018-1786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1786-3

Keywords

Navigation