Skip to main content

Advertisement

Log in

Optimizing bone cement stiffness for vertebroplasty through biomechanical effects analysis based on patient-specific three-dimensional finite element modeling

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Vertebroplasty is a common and effective treatment for symptomatic osteoporotic vertebral compression fractures. However, the cemented and adjacent vertebras have a risk of recollapse due to largely unassured mechanisms, among which excessive stiffness of bone cement may be an important risk factor. This study aimed to find the most appropriate range of bone cement stiffness by analyzing its biomechanical effects on the augmented and adjacent vertebras of individual patient after vertebroplasty. A three-dimensional finite element model of T11-L1 osteoligamentous vertebras was reconstructed according to individual computed tomography data and validated by post mortem human subject experiment in literatures. Bone cement of varying stiffness was injected into the trabecular core of the T12 vertebra simulatively. The maximum von Mises stresses on cancellous and cortical bones of T11-L1 vertebras were analyzed under the loading conditions of flexion, extension, bending, and torsion. For the adjacent T11 and L1 vertebras, the stepwise elevation of the bone cement elastic modulus increased the maximum von Mises stress on the cancellous bone, but its effect on cortical bone was negligible. For the augmented T12 vertebra, the stresses on cancellous bone increased slightly under the loading condition of lateral bending and remained no impact on cortical bone. The linear interpolation revealed that the most suitable range of cement elastic modulus is 833.1 and 1408.1 Mpa for this patient. Increased elastic modulus of bone cement may lead to a growing risk of recollapse for the cemented vertebra as well as the adjacent vertebras. Our study provides a fresh perspective in clinical optimization of individual therapy in vertebroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rosen CJ, Ingelfinger JR (2016) Building better bones with biologics - a new approach to osteoporosis? N Engl J Med 375(16):1583–1584

    Article  PubMed  Google Scholar 

  2. An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, Chen B (2016) Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 147:46–58

    Article  CAS  PubMed  Google Scholar 

  3. Parreira P et al (2017) An overview of clinical guidelines for the management of vertebral compression fracture: a systematic review. Spine J 17:1932–1938

    Article  PubMed  Google Scholar 

  4. Zhao S, Xu CY, Zhu AR, Ye L, Lv LL, Chen L, Huang Q, Niu F (2017) Comparison of the efficacy and safety of 3 treatments for patients with osteoporotic vertebral compression fractures: a network meta-analysis. Medicine (Baltimore) 96(26):e7328

    Article  Google Scholar 

  5. Garg B, Dixit V, Batra S, Malhotra R, Sharan A (2017) Non-surgical management of acute osteoporotic vertebral compression fracture: a review. J Clin Orthop Trauma 8(2):131–138

    Article  PubMed  PubMed Central  Google Scholar 

  6. Svensson HK, Olsson LE, Hansson T, Karlsson J, Hansson-Olofsson E (2017) The effects of person-centered or other supportive interventions in older women with osteoporotic vertebral compression fractures-a systematic review of the literature. Osteoporos Int 28:2521–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mehbod, A., S. Aunoble, and J.C. Le Huec, Vertebroplasty for osteoporotic spine fracture: prevention and treatment. Eur Spine J, 2003 12 Suppl 2: p. S155–62

    Article  PubMed  PubMed Central  Google Scholar 

  8. Clark W, Bird P, Diamond T, Gonski P (2015) Vertebroplasty for acute painful osteoporotic fractures (VAPOUR): study protocol for a randomized controlled trial. Trials 16:159

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rosenbaum BP, Kshettry VR, Kelly ML, Mroz TE, Weil RJ (2017) Trends in inpatient Vertebroplasty and Kyphoplasty volume in the United States, 2005-2011: assessing the impact of randomized controlled trials. Clin Spine Surg 30(3):E276–E282

    Article  PubMed  Google Scholar 

  10. Kan SL, Yuan ZF, Chen LX, Sun JC, Ning GZ, Feng SQ (2017) Which is best for osteoporotic vertebral compression fractures: balloon kyphoplasty, percutaneous vertebroplasty or non-surgical treatment? A study protocol for a Bayesian network meta-analysis. BMJ Open 7(1):e012937

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen LH, Hsieh MK, Liao JC, Lai PL, Niu CC, Fu TS, Tsai TT, Chen WJ (2011) Repeated percutaneous vertebroplasty for refracture of cemented vertebrae. Arch Orthop Trauma Surg 131(7):927–933

    Article  PubMed  Google Scholar 

  12. Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS (2003) Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226(1):119–124

    Article  PubMed  Google Scholar 

  13. Zhang L, Wang Q, Wang L, Shen J, Zhang Q, Sun C (2017) Bone cement distribution in the vertebral body affects chances of recompression after percutaneous vertebroplasty treatment in elderly patients with osteoporotic vertebral compression fractures. Clin Interv Aging 12:431–436

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aquarius R, Homminga J, Verdonschot N, Tanck E (2011) The fracture risk of adjacent vertebrae is increased by the changed loading direction after a wedge fracture. Spine (Phila Pa 1976) 36(6):E408–E412

    Article  Google Scholar 

  15. Voormolen MH et al (2006) Prospective clinical follow-up after percutaneous vertebroplasty in patients with painful osteoporotic vertebral compression fractures. J Vasc Interv Radiol 17(8):1313–1320

    Article  PubMed  Google Scholar 

  16. Lin WC, Lee YC, Lee CH, Kuo YL, Cheng YF, Lui CC, Cheng TT (2008) Refractures in cemented vertebrae after percutaneous vertebroplasty: a retrospective analysis. Eur Spine J 17(4):592–599

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ha KY, Kim YH (2013) Risk factors affecting progressive collapse of acute osteoporotic spinal fractures. Osteoporos Int 24(4):1207–1213

    Article  CAS  PubMed  Google Scholar 

  18. Rho YJ, Choe WJ, Chun YI (2012) Risk factors predicting the new symptomatic vertebral compression fractures after percutaneous vertebroplasty or kyphoplasty. Eur Spine J 21(5):905–911

    Article  PubMed  Google Scholar 

  19. He Z, Zhai Q, Hu M, Cao C, Wang J, Yang H, Li B (2015) Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: current status and future developments. J Orthopaedic Translation 3(1):1–11

    Article  CAS  Google Scholar 

  20. Bae H, Hatten HP Jr, Linovitz R, Tahernia AD, Schaufele MK, McCollom V, Gilula L, Maurer P, Benyamin R, Mathis JM, Persenaire M (2012) A prospective randomized FDA-IDE trial comparing Cortoss with PMMA for vertebroplasty: a comparative effectiveness research study with 24-month follow-up. Spine (Phila Pa 1976) 37(7):544–550

    Article  Google Scholar 

  21. Heini PF, Walchli B, Berlemann U (2000) Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 9(5):445–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tai, C.L., et al., Modification of Mechanical Properties, Polymerization Temperature, and Handling Time of Polymethylmethacrylate Cement for Enhancing Applicability in Vertebroplasty. Biomed Res Int, 2016. 2016: p. 7901562

  23. Hoppe S, Wangler S, Aghayev E, Gantenbein B, Boger A, Benneker LM (2016) Reduction of cement leakage by sequential PMMA application in a vertebroplasty model. Eur Spine J 25(11):3450–3455

    Article  PubMed  Google Scholar 

  24. Boger A, Heini P, Windolf M, Schneider E (2007) Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement. Eur Spine J 16(12):2118–2125

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim JM, Shin DA, Byun DH, Kim HS, Kim S, Kim HI (2012) Effect of bone cement volume and stiffness on occurrences of adjacent vertebral fractures after vertebroplasty. J Korean Neurosurg Soc 52(5):435–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pneumaticos SG, Triantafyllopoulos GK, Evangelopoulos DS, Hipp JA, Heggeness MH (2013) Effect of vertebroplasty on the compressive strength of vertebral bodies. Spine J 13(12):1921–1927

    Article  PubMed  Google Scholar 

  27. Cho AR, Cho SB, Lee JH, Kim KH (2015) Effect of augmentation material stiffness on adjacent vertebrae after osteoporotic Vertebroplasty using finite element analysis with different loading methods. Pain Physician 18(6):E1101–E1110

    PubMed  Google Scholar 

  28. Wijayathunga VN, Oakland RJ, Jones AC, Hall RM, Wilcox RK (2013) Vertebroplasty: patient and treatment variations studied through parametric computational models. Clin Biomech (Bristol, Avon) 28(8):860–865

    Article  Google Scholar 

  29. Takano H, Yonezawa I, Todo M, Mazlan MH, Sato T, Kaneko K (2016) Biomechanical study of the effects of balloon Kyphoplasty on the adjacent vertebrae. J Biomedical Sci Engineering 9(10):478–487

    Article  Google Scholar 

  30. Winking M, Stahl JP, Oertel M, Schnettler R, Böker DK (2004) Treatment of pain from osteoporotic vertebral collapse by percutaneous PMMA vertebroplasty. Acta Neurochir 146(5):469–476

    Article  CAS  PubMed  Google Scholar 

  31. Kosmopoulos V, Keller TS (2004) Damage-based finite-element vertebroplasty simulations. Eur Spine J 13(7):617–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kurutz, M. and L. Oroszváry, Finite Element Modeling and Simulation of Healthy and Degenerated Human Lumbar Spine. 2012: INTECH Open Access Publisher

  33. Silva MJ, Wang C, Keaveny TM, Hayes WC (1994) Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone 15(4):409–414

    Article  CAS  PubMed  Google Scholar 

  34. Whitehouse WJ, Dyson ED, Jackson CK (1971) The scanning electron microscope in studies of trabecular bone from a human vertebral body. J Anat 108(Pt 3):481–496

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ritzel H, Amling M, Pösl M, Hahn M, Delling G (1997) The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res 12(1):89–95

    Article  CAS  PubMed  Google Scholar 

  36. Blanchard, R., Morin C., Malandrino A., Vella A., Sant Z., Hellmich C., Patient-specific fracture risk assessment of vertebrae: a multiscale approach coupling X-ray physics and continuum micromechanics. Int J Numer Method Biomed Eng, 2016. 32(9):e02760. https://doi.org/10.1002/cnm.2760

    Article  Google Scholar 

  37. Malandrino A, Noailly J, Lacroix D (2013) Regional annulus fibre orientations used as a tool for the calibration of lumbar intervertebral disc finite element models. Comput Methods Biomech Biomed Engin 16(9):923–928

    Article  PubMed  Google Scholar 

  38. Fazzalari NL, Parkinson IH, Fogg QA, Sutton-Smith P (2006) Antero-postero differences in cortical thickness and cortical porosity of T12 to L5 vertebral bodies. Joint Bone Spine 73(3):293–297

    Article  PubMed  Google Scholar 

  39. Roberts S, McCall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6(6):385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oxland TR (2016) Fundamental biomechanics of the spine--what we have learned in the past 25 years and future directions. J Biomech 49(6):817–832

    Article  PubMed  Google Scholar 

  41. Ellingson AM, Shaw MN, Giambini H, An KN (2016) Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine. Comput Methods Biomech Biomed Engin 19(9):1009–1018

    Article  PubMed  Google Scholar 

  42. Wagnac E, Arnoux PJ, Garo A, Aubin CE (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50(9):903–915

    Article  PubMed  Google Scholar 

  43. Baroud G, Nemes J, Ferguson SJ, Steffen T (2003) Material changes in osteoporotic human cancellous bone following infiltration with acrylic bone cement for a vertebral cement augmentation. Comput Methods Biomech Biomed Engin 6(2):133–139

    Article  CAS  PubMed  Google Scholar 

  44. Lu YM, Hutton WC, Gharpuray VM (1996) Can variations in intervertebral disc height affect the mechanical function of the disc? Spine (Phila Pa 1976) 21(19):2208–2216 discussion 2217

    Article  CAS  Google Scholar 

  45. Ren, H., Shen Y., Zhang Y.Z., Ding W.Y., Xu J.X., Yang D.L., Cao J.M., Correlative factor analysis on the complications resulting from cement leakage after percutaneous kyphoplasty in the treatment of osteoporotic vertebral compression fracture. J Spinal Disord Tech, 2010. 23(7): p. e9–15

    Article  Google Scholar 

  46. Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine (Phila Pa 1976) 28(10):991–996

    Google Scholar 

  47. Silva MJ, Keaveny TM, Hayes WC (1997) Load sharing between the shell and centrum in the lumbar vertebral body. Spine (Phila Pa 1976) 22(2):140–150

    Article  CAS  Google Scholar 

  48. Kurutz M, Oroszvary L (2010) Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase. J Biomech 43(3):433–441

    Article  CAS  PubMed  Google Scholar 

  49. Chen SH, Tai CL, Lin CY, Hsieh PH, Chen WP (2008) Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques - a three-dimensional finite element analysis. BMC Musculoskelet Disord 9:88

    Article  PubMed  PubMed Central  Google Scholar 

  50. Galbusera F, Schmidt H, Wilke HJ (2012) Lumbar interbody fusion: a parametric investigation of a novel cage design with and without posterior instrumentation. Eur Spine J 21(3):455–462

    Article  PubMed  Google Scholar 

  51. Rohlmann A, Zander T, Schmidt H, Wilke HJ, Bergmann G (2006) Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech 39(13):2484–2490

    Article  PubMed  Google Scholar 

  52. Han KS, Rohlmann A, Yang SJ, Kim BS, Lim TH (2011) Spinal muscles can create compressive follower loads in the lumbar spine in a neutral standing posture. Med Eng Phys 33(4):472–478

    Article  PubMed  Google Scholar 

  53. Panjabi MM, Krag MH, White AA 3rd, Southwick WO (1977) Effects of preload on load displacement curves of the lumbar spine. Orthop Clin North Am 8(1):181–192

    CAS  PubMed  Google Scholar 

  54. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 76(3):413–424

    Article  CAS  PubMed  Google Scholar 

  55. Belkoff SM, Mathis JM, Erbe EM, Fenton DC (2000) Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine (Phila Pa 1976) 25(9):1061–1064

    Article  CAS  Google Scholar 

  56. Lo YP, Chen WJ, Chen LH, Lai PL (2008) New vertebral fracture after vertebroplasty. J Trauma 65(6):1439–1445

    Article  PubMed  Google Scholar 

  57. Kim YJ, Lee JW, Park KW, Yeom JS, Jeong HS, Park JM, Kang HS (2009) Pulmonary cement embolism after percutaneous vertebroplasty in osteoporotic vertebral compression fractures: incidence, characteristics, and risk factors. Radiology 251(1):250–259

    Article  PubMed  Google Scholar 

  58. Qiu TX, Teo EC, Zhang QH (2006) Effect of bilateral facetectomy of thoracolumbar spine T11-L1 on spinal stability. Med Biol Eng Comput 44(5):363–370

    Article  PubMed  Google Scholar 

  59. Xu G, Fu X, du C, Ma J, Li Z, Ma X (2014) Biomechanical effects of vertebroplasty on thoracolumbar burst fracture with transpedicular fixation: a finite element model analysis. Orthop Traumatol Surg Res 100(4):379–383

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L et al The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent non-treated vertebral bodies: A finite element evaluation. Clinical Biomechanics 25(2):166–172

    Article  PubMed  Google Scholar 

  61. Jones AC, Wilcox RK (2007) Assessment of factors influencing finite element vertebral model predictions. J Biomech Eng 129(6):898–903

    Article  PubMed  Google Scholar 

  62. Wilcox RK (2007) The influence of material property and morphological parameters on specimen-specific finite element models of porcine vertebral bodies. J Biomech 40(3):669–673

    Article  PubMed  Google Scholar 

  63. Widmer Soyka RP, Helgason B, Hazrati Marangalou J, van den Bergh JP, Rietbergen B, Ferguson SJ (2016) The effectiveness of percutaneous Vertebroplasty is determined by the patient-specific bone condition and the treatment strategy. PLoS One 11(4):e0151680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wijayathunga VN, Jones AC, Oakland RJ, Furtado NR, Hall RM, Wilcox RK (2008) Development of specimen-specific finite element models of human vertebrae for the analysis of vertebroplasty. Proc Inst Mech Eng H 222(2):221–228

    Article  CAS  PubMed  Google Scholar 

  65. Matsuura Y, Giambini H, Ogawa Y, Fang Z, Thoreson AR, Yaszemski MJ, Lu L, An KN (2014) Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine (Phila Pa 1976) 39(22):E1291–E1296

    Article  CAS  Google Scholar 

  66. Chent, X., H. Li, and X. Yang. A Patient-Specific Approach to Assessment of Biomechanical Stability Following Percutaneous Vertebroplasty Using CT Images. In 2007 IEEE/ICME International Conference on Complex Medical Engineering 2007

  67. Tarsuslugil SM, O’Hara RM, Dunne NJ, Buchanan FJ, Orr JF, Barton DC, Wilcox RK (2014) Experimental and computational approach investigating burst fracture augmentation using PMMA and calcium phosphate cements. Ann Biomed Eng 42(4):751–762

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Finite element analyses were performed at the Department of Mechanical Engineering, Embry-Riddle Aeronautical University. The authors specially thank Xianping Du for technical assistance. This study was funded by the grants of the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University (JY201502).

Funding

This study was funded by the grants of the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University (JY201502).

Author information

Authors and Affiliations

Authors

Contributions

Shijie Chen and Yi Peng designed the study and wrote the first draft of the manuscript. Jinsong Li, Biaoxiang Xu, and Weiguo Wang collected the data. Xianping Du completed finite element modeling, computation and analysis. Cheng Peng, Song Wu, Lihua Huang, and Ruisen Zhan participated in data analysis and interpretation and revision of the manuscript. All authors have approved the final version of the paper.

Corresponding authors

Correspondence to Song Wu, Cheng Peng or Shijie Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Du, X., Huang, L. et al. Optimizing bone cement stiffness for vertebroplasty through biomechanical effects analysis based on patient-specific three-dimensional finite element modeling. Med Biol Eng Comput 56, 2137–2150 (2018). https://doi.org/10.1007/s11517-018-1844-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1844-x

Keywords

Navigation