Skip to main content
Log in

Custom-designed orthopedic plates using semantic parameters and template

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

To quickly construct and conveniently modify the ideal orthopedic plates for individuals, a novel approach for designing the customized orthopedic plates is put forward based on bone template and plate semantic parameters, thus avoiding the need for the detailed geometric operations and the design of orthopedic plates from scratch each time. Firstly, an average bone model (ABM) is created from the existing bone models, among which each bone has an equal contribution to the ABM, and then the template, which contains region of interest (ROI) and segmentation regions, is constructed based on the ABM. Secondly, attached on the template ROI, the abutted surface feature of an orthopedic plate is designed including definition of characteristic points and configuration of semantic parameters, with a directed graph proposed to define the constraint relationship between semantic parameters. Lastly, the custom-designed plate for the target bone can be adaptively generated with a group of new semantic parameter values which are obtained through the mapping from the template to the target bone model. This plate can be easily extended to suit the bones of the same type for individuals by just editing semantic parameters. This method supports modification for a custom-designed plate with semantic parameters, consequently promoting the quality and efficiency of orthopedic plate design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Okazaki Y (2012) Development trends of custom-made orthopedic implants. J Artif Organs 15(1):20–25

    Article  PubMed  Google Scholar 

  2. Haglin JM, Eltorai AEM, Gil JA (2016) Patient-specific orthopaedic implants. Orthop Surg 8(4):417–424

    Article  PubMed  Google Scholar 

  3. Koen E, Vinod K (2012) Finding the best fit: anatomical data mining can improve the results for standard implant design, http://biomedical.materialise.com/white-papers-finding-best-fit-abstract-0

  4. Kozic N, Weber S, Büchler P, Lutz C, Reimers N, Ballester MAG, Reyes M (2010) Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets. Med Image Anal 14(3):265–275

    Article  PubMed  Google Scholar 

  5. Manić M, Stamenković Z, Mitković M (2015) Design of 3D model of customized anatomically adjusted implants. FU Mech Eng 13(3):269–282

  6. Neto R, Marques T, Marta M (2015) Digital-based engineering tools for tailored design of medical implants. Mech Mach Sci(MMS): 733–741

  7. Praun E, Sweldens W, Schröder P (2001) Consistent mesh parameterizations. Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM: 179–184

  8. Kraevoy V, Sheffer A (2004) Cross-parameterization and compatible remeshing of 3D models. ACM Trans Graph (TOG). ACM 23(3):861–869

    Article  Google Scholar 

  9. Botsch M, Sorkine O (2008) On linear variational surface deformation methods. IEEE TVCG 14:213–230

    PubMed  Google Scholar 

  10. Yumer ME, Chaudhuri S, Hodgins JK, Kara LB (2015) Semantic shape editing using deformation handles. ACM Trans Graph (TOG) 34(4):86

    Article  Google Scholar 

  11. Yumer ME, Kara LB (2014) Co-constrained handles for deformation in shape collections. ACM Trans Graph (TOG) 33(6):187

    Article  Google Scholar 

  12. Nyirenda PJ, Bronsvoort WF (2009) A framework for extendable freeform surface feature modelling. Comput Ind 60(1):35–47

    Article  Google Scholar 

  13. Langerak TR (2010) Local parameterization of freeform shapes using freeform feature recognition. Comput Aided Des 42(8):682–692

    Article  Google Scholar 

  14. Wang CCL (2005) Parameterization and parametric design of mannequins. Comput Aided Des 37(1):83–98

    Article  Google Scholar 

  15. Seo H, Magnenat-Thalmann N (2004) An example-based approach to human body manipulation. Graph Model 66(1):1–23

    Article  Google Scholar 

  16. Pernot JP, Giannini F, Falcidieno B, Leon JC (2009) Parameterised free-form feature templates. IEEE International Conference on IEEE: 140–147

  17. Pernot JP, Falcidieno B, Giannini F (2008) Incorporating free-form features in aesthetic and engineering product design: state-of-the-art report. Comput Ind 59(6):626–637

    Article  Google Scholar 

  18. He K, Chen Z, Jiang J, Wang L (2014) Creation of user-defined freeform feature from surface models based on characteristic curves. Comput Ind 65(4):598–609

    Article  Google Scholar 

  19. Arnone JC (2011) A comprehensive simulation-based methodology for the design and optimization of orthopaedic internal fixation implants, Ph.D., University of Missouri, Columbia

  20. Arnone JC, Ward CV, Della Rocca GJ (2010) Simulation-based design of orthopedic trauma implants[C]Am Soc Mech Eng(ASME): 465–474

  21. Dobbe JGG, Vroemen JC, Strackee SD (2013) Patient-tailored plate for bone fixation and accurate 3D positioning in corrective osteotomy. Med Biol Eng Comput 51(1–2):19–27

    Article  CAS  PubMed  Google Scholar 

  22. Kaman MO, Celik N, Karakuzu S (2014) Numerical stress analysis of the plates used to treat the tibia bone fracture. J Appl Math Phys 2(06):304–309

    Article  Google Scholar 

  23. Andrade-Campos A, Ramos A, Simões JA (2012) A model of bone adaptation as a topology optimization process with contact. J Biomed Sci Eng 5(5):229–244

    Article  Google Scholar 

  24. Kutuk MA, Gov I (2013) Application of topology optimization to the tibial osteotomy fixation plates. Appl Bionics Biomech 10(2–3):125–133

    Article  Google Scholar 

  25. Grujicica M, Arakerea G, Xiea X, LaBergeb M, Grujicicb A, Wagnerc DW, Vallejoc A (2010) Design-optimization and material selection for a femoral-fracture fixation-plate implant. Mater Des 31(7):3463–3473

    Article  Google Scholar 

  26. Kim VG, Li W, Mitra NJ, Chaudhuri S, Diverdi S, Funkhouser T (2013) Learning part-based templates from large collections of 3D shapes. ACM Trans. Graph 32(4):70

    Google Scholar 

  27. Allen B, Curless B, Popovic Z (2003) The space of human body shapes reconstruction and parameterization from range scans. ACM Trans. Graph 22(3):587–594

    Article  Google Scholar 

  28. Yeh IC, Lin CH, Sorkine O (2011) Template-based 3d model fitting using dual-domain relaxation. IEEE Trans Vis Comput Graph 17(8):1178–1190

    Article  PubMed  Google Scholar 

  29. Myronenko A, Song X (2010) Point set registration coherent point drift. IEEE TPAMI 32(12):2262–2275

    Article  Google Scholar 

  30. Aiger D, Mitra NJ, Cohen-Or D (2008) 4-points congruent sets for robust pairwise surface registration. ACM Trans Graph (TOG) 27(3):85

    Article  Google Scholar 

  31. Tam GKL, Cheng ZQ, Lai YK (2013) Registration of 3D point clouds and meshes: a survey from rigid to non-rigid. IEEE TVCG 19(7):1199–1217

    PubMed  Google Scholar 

  32. He K, Zhang R, Chen Z, Jiang J, Yuming Z (2017) An approach for generating an average bone template with semantic parameters. J Med Dev 11(3):031004 -031004-7

    Article  Google Scholar 

  33. Chen X, He K, Chen Z, Xiang W (2015) Quick construction of femoral model using surface feature parameterization. Mol Cell Biomech 12:123–146

    Google Scholar 

  34. Park BK, Bae JH, Koo BY, Kim JJ (2014) Function-based morphing methodology for parameterizing patient-specific models of human proximal femurs. Comput Aided Des 2014(51):31–38

    Article  Google Scholar 

  35. Veselinovic M, Vitkovic N, Stevanovic D et al (2011) Study on creating human tibia geometrical models// E-health and bioengineering conference (EHB). IEEE:1–4

  36. Kunjin H, Zeyu Z, Rongli Z (2015) Design of orthopedic plates and its modification based on feature. Mol Cell Biomech 12(4):265–286

    PubMed  Google Scholar 

  37. Qin SF, Wright DK (2006) Progressive surface modelling scheme from unorganised curves. Comput Aided Des 38(10):1113–1122

    Article  Google Scholar 

  38. Dekkers E, Kobbelt L, Pawlicki R (2011) A sketching interface for feature curve recovery of free-form surfaces. Comput Aided Des 43(7):771–780

    Article  Google Scholar 

  39. He K, Chen Z, Zhao L (2011) A new method for classification and parametric representation of freeform surface feature. Int J Adv Manuf Technol 57(1–4):271–283

    Article  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of China (grant no. 61472118), the Natural Science Foundation of China (grant no. 61772172), and the natural science foundation of Jiangsu Province in China (grant no. BK20141158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Kunjin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunjin, H., Xiang, Z. & Yuxue, Z. Custom-designed orthopedic plates using semantic parameters and template. Med Biol Eng Comput 57, 765–775 (2019). https://doi.org/10.1007/s11517-018-1916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1916-y

Keywords

Navigation