Skip to main content

Advertisement

Log in

Ensemble learning algorithm based on multi-parameters for sleep staging

Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this study is to propose a high-accuracy and high-efficiency sleep staging algorithm using single-channel electroencephalograms (EEGs). The process consists four parts: signal preprocessing, feature extraction, feature selection, and classification algorithms. In the preconditioning of EEG, wavelet function and IIR filter are used for noise reduction. In feature selection, 15 feature algorithms in time domain, time-frequency domain, and nonlinearity are selected to obtain 30 feature parameters. Feature selection is very important for eliminating irrelevant and redundant features. Feature selection algorithms as Fisher score, Sequential Forward Selection (SFS), Sequential Floating Forward Selection (SFFS), and Fast Correlation-Based Filter Solution (FCBF) were used. The paper establishes a new ensemble learning algorithm based on stacking model. The basic layers are k-Nearest Neighbor (KNN), Random Forest (RF), Extremely Randomized Trees (ERT), Multi-layer Perceptron (MLP), and Extreme Gradient Boosting (XGBoost) and the second layer is a Logistic regression. Comparing classification of RF, Gradient Boosting Decision Tree (GBDT), and XGBoost, the accuracies and kappa coefficients are 96.67% and 0.96 using the proposed method. It is higher than other classification algorithms.The results show that the proposed method can accurately sleep staging using single-channel EEG and has a high ability to predict sleep staging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aboalayon KAI, Almuhammadi WS, Faezipour MA (2015) Comparison of different machine learning algorithms using single channel EEG signal for classifying human sleep stages. In: Systems, Applications and Technology Conference, pp 1–6

    Google Scholar 

  2. Alickovic E, Subasi A (2018) Ensemble SVM method for automatic sleep stage classification. IEEE Trans Instrum Meas 60:1258-1265

  3. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88:174102

    Article  CAS  PubMed  Google Scholar 

  4. Breiman L (2001) Random forests, machine learning, p 45

    Google Scholar 

  5. Burioka N, Miyata M, Cornélissen G, Halberg F, Takeshima T, Kaplan DT, Suyama H, Endo M, Maegaki Y, Nomura T (2005) Approximate entropy in the electroencephalogram during wake and sleep. Clin Eeg Neurosci 36:21–24

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carbon A, Castellia G, Stanleyb HE (2012) Time-dependent Hurst exponent in financial time series. Phys A Stat Mech Its Appl 344:267–271

    Article  Google Scholar 

  7. Chen T, He T, Benesty M, Khotilovich V, Tang Y (2016) xgboost: Extreme Gradient Boosting

    Book  Google Scholar 

  8. Chen W, Wang Z, Xie H, Yu W (2007) Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Syst Rehabil Eng A Publ IEEE Eng Med Biol Soc 15:266–272

    Article  Google Scholar 

  9. Chen W, Wang Z, Xie H, Yu W (2007) Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Syst Rehabil Eng A Publ IEEE Eng Med Biol Soc 15:266–272

    Article  Google Scholar 

  10. Crawford C (1986) Sleep recording in the home with automatic analysis of results. Eur Neurol 25:30–35

    Article  PubMed  Google Scholar 

  11. Da ST, Kozakevicius AJ, Rodrigues CR (2016) Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain. Med Biol Eng Comput 55:1–10

    Google Scholar 

  12. Denk TC, Parhi KK (1997) VLSI architectures for lattice structure based orthonormal discrete wavelet transforms. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44:129–132

    Article  Google Scholar 

  13. Ebrahimi F, Mikaeili M, Estrada E (2008) Nazeran H automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients. In: International Conference of the IEEE Engineering in Medicine & Biology Society, p 1151

    Google Scholar 

  14. Farge M (1992) Wavelet transform and their application to turbulence. Annurevfluid Mech 56:68–68

    Google Scholar 

  15. Flexer A, Gruber G, Dorffner G (2005) A reliable probabilistic sleep stager based on a single EEG signal. Artif Intell Med 33:199–207

    Article  PubMed  Google Scholar 

  16. Fonseca P, Long X, Radha M, Haakma R, Aarts RM, Rolink J (2015) Sleep stage classification with ECG and respiratory effort. Physiol Meas 36:2027–2040

    Article  PubMed  Google Scholar 

  17. Frøyland J, Frøyland J (1992) Introduction to chaos and coherence. Institute of Physics Publishing, Bristol

    Google Scholar 

  18. Fraiwan L, Lweesy K, Khasawneh N, Wenz H, Dickhaus H (2012) Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput Methods Progn Biomed 108:10–19

    Article  Google Scholar 

  19. Güneş S, Polat K, Yosunkaya Ş (2010) Efficient sleep stage recognition system based on EEG signal using -means clustering based feature weighting. Expert Syst Appl 37:7922–7928

    Article  Google Scholar 

  20. Gabrel V, Murat C, Wu L (2013) New models for the robust shortest path problem: complexity, resolution and generalization. Ann Oper Res 207:97–120

    Article  Google Scholar 

  21. Gandhi TK, Chakraborty P, Roy GG, Panigrahi BK (2012) Discrete harmony search based expert model for epileptic seizure detection in electroencephalography. Expert Syst Appl An Int J 39:4055–4062

    Article  Google Scholar 

  22. Ge J, Peng Z, Xin Z, Wang M (2007) Sample entropy analysis of sleep EEG under different stages. In: IEEE/ICME International Conference on Complex Medical Engineering

    Google Scholar 

  23. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:E215

    CAS  PubMed  Google Scholar 

  24. Goutte C, Gaussier E (2005) A probabilistic interpretation of precision, recall and F-score, with implications for evaluation. Int J Radiat Biol Relat Stud Phys Chem Med 51:952–952

    Google Scholar 

  25. Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39:526–530

    Article  CAS  PubMed  Google Scholar 

  26. Hobson JA (1969) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects: A. Rechtschaffen and A. Kales (editors). (Public Health Service, U.S. Government Printing Office, Washington, D.C., 1968, 58 p., $4.00). Electroencephalogr Clin Neurophysiol 26:644–644

    Article  Google Scholar 

  27. Jin X, Bo T, He H, Hong M (2016) Semisupervised feature selection based on relevance and redundancy criteria. IEEE Trans Neural Netw Learn Syst 28:1974–1984

    Google Scholar 

  28. Kemp B, Zwinderman AH, Tuk B, Kamphuisen HA, Oberyé JJ (2000) Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng 47:1185–1194

    Article  CAS  PubMed  Google Scholar 

  29. Koley B, Dey D (2012) An ensemble system for automatic sleep stage classification using single channel EEG signal. Comput Biol Med 42:1186–1195

    Article  CAS  PubMed  Google Scholar 

  30. Mandelbrot BB (1983) The fractal geometry of nature/Revised and enlarged edition. Whfreeman & Cop, New York, p 1

    Google Scholar 

  31. Mohseni HR, Maghsoudi A, Shamsollahi MB (2008) Seizure detection in EEG signals: a comparison of different approaches. In: Engineering in Medicine and Biology Society, 2006. Embs '06. International Conference of the IEEE, pp 6724–6727

    Google Scholar 

  32. Ozsen (2013) Classification of sleep stages using class-dependent sequential feature selection and artificial neural network. Neural Comput Appl 23:1239–1250

    Article  Google Scholar 

  33. Pearson RG, Dawson TP, Berry PM, Harrison PA (2002) SPECIES: a spatial evaluation of climate impact on the envelope of Species. Ecol Model 154:289–300

    Article  Google Scholar 

  34. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 88:2297–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Plastino AR, Plastino A (1993) Stellar polytropes and Tsallis' entropy. Phys Lett A 174:384–386

    Article  Google Scholar 

  36. Quinlan R (1996) Bagging, boosting, and C4.5, vol 1, pp 725–730

    Google Scholar 

  37. Rajendra AU, Oliver F, Kannathal N, ., Tjileng C, Swamy L (2005) Non-linear analysis of EEG signals at various sleep stages. Comput Methods Prog Biomed 80:37–45

    Article  Google Scholar 

  38. Raschka S, Nakano R, Bourbeau J, Mcginnis W, Poiriermorency G, Fernandez P, Bahnsen AC, Peters M, Savage M, Abramowitz M (2018) rasbt/mlxtend: Version 0.11.0

    Google Scholar 

  39. Richman JS, Lake DE, Moorman JR (2004) Sample entropy. Methods Enzymol 384:172

    Article  PubMed  Google Scholar 

  40. Rodriguez JD, Perez A, Lozano JA (2010) Sensitivity analysis of k-fold cross validation in prediction error estimation. In: IEEE Computer Society

    Google Scholar 

  41. Roebuck A, Monasterio V, Gederi E, Osipov M, Behar J, Malhotra A, Penzel T, Clifford GD (2014) A review of signals used in sleep analysis. Physiol Meas 35:R1–R57

    Article  CAS  PubMed  Google Scholar 

  42. Samiee K, Kovács P, Kiranyaz S, Gabbouj M, Saramaki T (2015) Sleep stage classification using sparse rational decomposition of single channel EEG records. In: Signal Processing Conference, pp 1860–1864

    Google Scholar 

  43. Şen B, Peker M, Çavuşoğlu A, Çelebi FV (2014) A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J Med Syst 38:1–21

    Article  Google Scholar 

  44. Şen B, Peker M, Çavuşoğlu A, Çelebi FV (2014) A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J Med Syst 38:18

    Article  PubMed  Google Scholar 

  45. Silveira TLTD, Kozakevicius AJ, Rodrigues CR (2017) Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain. Med Biol Eng Comput 55:1–10

    Article  Google Scholar 

  46. Song Y, Crowcroft J, Zhang J (2012) Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 210:132–146

    Article  PubMed  Google Scholar 

  47. Sors A, Bonnet S, Mirek S, Vercueil L, Payen JF (2018) A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomed Signal Process Control 42:107–114

    Article  Google Scholar 

  48. Subasi A (2005) Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Syst Appl 28:701–711

    Article  Google Scholar 

  49. Tang B, Chen Q, Wang X, Wang X (2010) Reranking for stacking ensemble learning. In: International Conference on Neural Information Processing: Theory and Algorithms, pp 575–584

    Chapter  Google Scholar 

  50. Van Sweden B, Kemp B, Kamphuisen HAC, Van DV, E A (1990) Alternative electrode placement in ( automatic) sleep scoring

    Google Scholar 

  51. Vanoli E, Adamson PB, Ba-Lin GDP, Lazzara R, Orr WC (2001) Heart rate variability during specific sleep stages. In: Computers in cardiology, vol 2001, pp 461–464

    Google Scholar 

  52. Ververidis D, Kotropoulos C (2006) Fast sequential floating forward selection applied to emotional speech features estimated on DES and SUSAS data collections. In: Signal Processing Conference, 2006 European, pp 1–5

    Google Scholar 

  53. Willemen T, Van DD, Verhaert V, Vandekerckhove M, Exadaktylos V, Verbraecken J, Van HS, Haex B, Sloten JV (2017) An evaluation of cardiorespiratory and movement features with respect to sleep-stage classification. IEEE J Biomed Health Inform 18:661–669

    Article  Google Scholar 

  54. Xie J, Coggeshall S (2010) Prediction of transfers to tertiary care and hospital mortality: a gradient boosting decision tree approach. Statist Anal Data Min 3:253–258

    Google Scholar 

  55. Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Twentieth International Conference on International Conference on Machine Learning, pp 856–863

    Google Scholar 

  56. Zhu G, Yan L, Peng W (2014) Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J Biomed Health Inform 18:1813–1821

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechun Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhao, D., Wang, Y. et al. Ensemble learning algorithm based on multi-parameters for sleep staging. Med Biol Eng Comput 57, 1693–1707 (2019). https://doi.org/10.1007/s11517-019-01978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01978-z

Keywords

Navigation