Skip to main content
Log in

A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Sperm morphology, as an indicator of fertility, is a critical tool in semen analysis. In this study, a smartphone-based hybrid system that fully automates the sperm morphological analysis is introduced with the aim of eliminating unwanted human factors. Proposed hybrid system consists of two progressive steps: automatic segmentation of possible sperm shapes and classification of normal/ab-normal sperms. In the segmentation step, clustering techniques with/without group sparsity approach were tested to extract region of interests from the images. Subsequently, a novel publicly available morphological sperm image data set, whose labels were identified by experts as non-sperm, normal and abnormal sperm, was created as the ground truths of classification step. In the classification step, conventional and ensemble machine learning methods were applied to domain-specific features that were extracted by using wavelet transform and descriptors. Additionally, as an alternative to conventional features, three deep neural network architectures, which can extract high-level features from raw images after using statistical learning, were employed to increase the proposed method’s performance. The results show that, for the conventional features, the highest classification accuracies were achieved as 80.5% and 83.8% by using the wavelet- and descriptor-based features that were fed to the Support Vector Machines respectively. On the other hand, the Mobile-Net, which is a very convenient network for smartphones, achieved 87% accuracy. In the light of obtained results, it is seen that a fully automatic hybrid system, which uses the group sparsity to enhance segmentation performance and the Mobile-Net to obtain high-level robust features, can be an effective mobile solution for the sperm morphology analysis problem.

A fully automated hybrid human sperm detection and classification system based on mobile-net

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al (2016) Tensorflow: large-scale machine learning on heterogeneous systems. arXiv preprint arXiv:1603.04467

  2. Alegre E, Biehl M, Petkov N, Sanchez L (2013) Assessment of acrosome state in boar spermatozoa heads using n-contours descriptor and rlvq. Comput Methods Program Biomed 111(3):525–536

    Article  CAS  Google Scholar 

  3. Alegre E, GonzáLez-Castro V, Alaiz-rodríguez R, GarcíA-OrdáS MT (2012) Texture and moments-based classification of the acrosome integrity of boar spermatozoa images. Comput Methods Program Biomed 108(2):873–881

    Article  Google Scholar 

  4. Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting the sequence specificities of dna- and rna-binding proteins by deep learning. Nat Biotechnol 33:831–838

    Article  CAS  PubMed  Google Scholar 

  5. Alpaydin E (2014) Introduction to machine learning the. MIT Press, Cambridge

  6. Amann RP, Waberski D (2014) Computer-assisted sperm analysis (casa): capabilities and potential developments. Theriogenology 81(1):5–17

    Article  PubMed  Google Scholar 

  7. Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computational biology. Mol Syst Biol 12(7):878

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79

    Article  Google Scholar 

  9. Bach F, Jenatton R, Mairal J, Obozinski G et al (2012) Optimization with sparsity-inducing penalties. Found Trends®; Mach Learn 4(1):1–106

    Google Scholar 

  10. Bao P, Zhang L (2003) Noise reduction for magnetic resonance images via adaptive multiscale products thresholding. IEEE Trans Med Imaging 22(9):1089–1099

    Article  PubMed  Google Scholar 

  11. Barroso G, Mercan R, Ozgur K, Morshedi M, Kolm P, Coetzee K, Kruger T, Oehninger S (1999) Intra-and inter-laboratory variability in the assessment of sperm morphology by strict criteria: impact of semen preparation, staining techniques and manual versus computerized analysis. Hum Reprod 14(8):2036–2040

    Article  CAS  PubMed  Google Scholar 

  12. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: European conference on computer vision. Springer, pp 404–417

  13. Belsey M, Moghissi K, Eliasson R, Paulsen C, Gallegos A, Prasad M (1980) Laboratory manual for the examination of human semen and semen-cervical mucus interaction

  14. Bijar A, Benavent AP, Mikaeili M et al (2012) Fully automatic identification and discrimination of sperms parts in microscopic images of stained human semen smear. J Biomed Sci Eng 5(07):384

    Article  Google Scholar 

  15. Bijar A, Mikaeili M, Benavent AP, Khayati R (2012) Segmentation of sperm’s acrosome, nucleus and mid-piece in microscopic images of stained human semen smear. In: 2012 8th international symposium on Communication systems, networks & digital signal processing (CSNDSP). IEEE, pp 1–6

  16. Björndahl L, Barratt CL, Mortimer D, Jouannet P (2015) How to count sperm properly: checklist for acceptability of studies based on human semen analysis. Hum Reprod 31(2):227–232

    PubMed  Google Scholar 

  17. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  18. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth and brooks, Monterey

  19. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838

    Article  Google Scholar 

  20. Centola GM (2014) Semen assessment. Urol Clin 41(1):163–167

    Article  Google Scholar 

  21. Chang V, Garcia A, Hitschfeld N, Härtel S (2017) Gold-standard for computer-assisted morphological sperm analysis. Comput Biol Med 83:143–150

    Article  PubMed  Google Scholar 

  22. Chang V, Saavedra JM, Castañeda V, Sarabia L, Hitschfeld N, Härtel S (2014) Gold-standard and improved framework for sperm head segmentation. Comput Methods Program Biomed 117(2):225–237

    Article  Google Scholar 

  23. Chen PY, Selesnick IW (2013) Group-sparse signal denoising: non-convex regularization, convex optimization. arXiv:1308.5038

  24. Chollet F et al (2015) Keras

  25. Cui W (2010) Mother or nothing: the agony of infertility

  26. DeLamater J, Plante RF (2015) Handbook of the sociology of sexualities. Springer, Berlin

  27. Deng SW, Han JQ (2018) Adaptive overlapping-group sparse denoising for heart sound signals. Biomed Signal Process Control 40:49–57

    Article  Google Scholar 

  28. Ding Y, He W, Chen B, Zi Y, Selesnick IW (2016) Detection of faults in rotating machinery using periodic time-frequency sparsity. J Sound Vib 382:357–378

    Article  Google Scholar 

  29. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  Google Scholar 

  31. García-Olalla O, Alegre E, Fernández-Robles L, Malm P, Bengtsson E (2015) Acrosome integrity assessment of boar spermatozoa images using an early fusion of texture and contour descriptors. Comput Methods Programs Biomed 120(1):49–64

    Article  PubMed  Google Scholar 

  32. Ghosh S, Dubey SK (2013) Comparative analysis of k-means and fuzzy c-means algorithms. Int J Adv Comput Scie Appl 4(4):35–39

  33. Gonzalez-Castro VGC, Alegre E, Morala-Arguello P, Suarez S (2009) A combined and intelligent new segmentation method for boar semen based on thresholding and watershed transform. Int J Imaging Robot 2 (S09):70–80

    Google Scholar 

  34. Gupta S, Chauhan RC, Sexana SC (2004) Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Med Biol Eng Comput 42(2):189–192

    Article  CAS  PubMed  Google Scholar 

  35. He W, Ding Y, Zi Y, Selesnick IW (2016) Sparsity-based algorithm for detecting faults in rotating machines. Mech Syst Signal Process 72:46–64

    Article  Google Scholar 

  36. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861

  37. Ilhan H, Serbes G, Aydin N (2019) Automatic directional masking technique for better sperm morphology segmentation and classification analysis. Electron Lett 55(5):256–258

    Article  Google Scholar 

  38. Ilhan HO, Aydin N (2018) A novel data acquisition and analyzing approach to spermiogram tests. Biomed Signal Process Control 41:129–139

    Article  Google Scholar 

  39. Ilhan HO, Serbes G, Aydin N (2018) Dual tree complex wavelet transform based sperm abnormality classification. In: 2018 41St international conference on telecommunications and signal processing (TSP). IEEE, pp 1–5

  40. Ilhan HO, Serbes G, Aydin N (2018) The effects of the modified overlapping group shrinkage technique on the sperm segmentation in the stained images. In: 2018 41St international conference on telecommunications and signal processing (TSP). IEEE, pp 1–4

  41. Ilhan HO, Sigirci IO, Serbes G, Aydin N (2018) The effect of nonlinear wavelet transform based de-noising in sperm abnormality classification. In: 2018 3Rd international conference on computer science and engineering (UBMK). IEEE, pp 658– 661

  42. Jermyn M, Desroches J, Mercier J, Tremblay MA, St-Arnaud K, Guiot M, Petrecca K, Leblond F (2016) Neural networks improve brain cancer detection with raman spectroscopy in the presence of operating room light artifacts. J Biomed Opt 94002:21–9

    Google Scholar 

  43. Kabir MA, Shahnaz C (2012) Denoising of ecg signals based on noise reduction algorithms in emd and wavelet domains. Biomed Signal Process Control 7(5):481–489

    Article  Google Scholar 

  44. Khachane MY, Manza R, Ramteke R (2015) Fuzzy rule based classification of human spermatozoa. In: 2015 international conference on Electrical, electronics, signals, communication and optimization (EESCO). IEEE, pp 1–5

  45. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

  46. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  47. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  48. Mallat S (1999) A wavelet tour of signal processing. Elsevier, Amsterdam

  49. Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide-baseline stereo from maximally stable extremal regions. Image Vis Comput 22(10):761–767

    Article  Google Scholar 

  50. Meurant G (2012) Wavelets: a tutorial in theory and applications, vol 2. Academic press, Cambridge

  51. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller MA, Fidjeland A, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518:529–533

    Article  CAS  PubMed  Google Scholar 

  52. Nafisi VR, Moradi MH, Nasr-Esfahani MH (2005) Sperm identification using elliptic model and tail detection. World Acad Sci Eng Technol 6:205–208

    Google Scholar 

  53. Nayak DR, Dash R, Majhi B (2016) Brain mr image classification using two-dimensional discrete wavelet transform and adaboost with random forests. Neurocomputing 177:188–197

    Article  Google Scholar 

  54. Organization WH et al (2010) Who laboratory manual for the examination and processing of human semen

  55. Panda S, Sahu S, Jena P, Chattopadhyay S (2012) Comparing fuzzy-c means and k-means clustering techniques: a comprehensive study. In: Advances in computer science, engineering and applications. Springer, pp 451–460

  56. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis (IJCV) 115(3):211–252

    Article  Google Scholar 

  57. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  Google Scholar 

  58. Sakar CO, Serbes G, Gunduz A, Tunc HC, Nizam H, Sakar BE, Tutuncu M, Aydin T, Isenkul ME, Apaydin H (2019) A comparative analysis of speech signal processing algorithms for parkinson’s disease classification and the use of the tunable q-factor wavelet transform. Appl Soft Comput 74:255–263

    Article  Google Scholar 

  59. Schölkopf B, Smola AJ, Bach F et al (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

  60. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A (2010) Rusboost: a hybrid approach to alleviating class imbalance. Trans Sys Man Cyber Part A 40(1):185–197

    Article  Google Scholar 

  61. Selesnick IW, Baraniuk RG, Kingsbury NC (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22(6):123–151

    Article  Google Scholar 

  62. Serbes G, Aydin N (2014) Denoising performance of modified dual-tree complex wavelet transform for processing quadrature embolic doppler signals. Med Biol Eng Comput 52(1):29–43

    Article  PubMed  Google Scholar 

  63. Serbes G, Sakar BE, Gulcur HO, Aydin N (2015) An emboli detection system based on dual tree complex wavelet transform and ensemble learning. Appl Soft Comput 37:87–94

    Article  Google Scholar 

  64. Shaker F, Monadjemi SA, Alirezaie J, Naghsh-Nilchi AR (2017) A dictionary learning approach for human sperm heads classification. Comput Biol Med 91:181–190

    Article  PubMed  Google Scholar 

  65. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

    Article  PubMed  Google Scholar 

  66. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484

    Article  CAS  PubMed  Google Scholar 

  67. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  68. Strang G, Nguyen T (1996) Wavelets and filter banks. SIAM, Thailand

  69. Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105(12):2295–2329

    Article  Google Scholar 

  70. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  71. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  72. Ulukaya S, Serbes G, Kahya YP (2019) Wheeze type classification using non-dyadic wavelet transform based optimal energy ratio technique. Comput Biol Med 104:175–182

    Article  PubMed  Google Scholar 

  73. Wang C, Leung A, Tsoi WL, Leung J, Ng V, Lee KF, Chan SY (1991) Computer-assisted assessment of human sperm morphology: comparison with visual assessment. Fertility Sterility 55(5):983–988

    Article  CAS  PubMed  Google Scholar 

  74. Wang D, Khosla A, Gargeya R, Irshad H, Beck AH (2016) Deep learning for identifying metastatic breast cancer. CoRR arXiv:1606.05718

  75. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, Hua Y, Gueroussov S, Najafabadi HS, Hughes TR et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 347(6218):1254806

    Article  PubMed  CAS  Google Scholar 

  76. Yang MS, Hu YJ, Lin KCR, Lin CCL (2002) Segmentation techniques for tissue differentiation in mri of ophthalmology using fuzzy clustering algorithms. Magn Reson Imaging 20(2):173–179

    Article  PubMed  Google Scholar 

  77. Zeng H, Edwards MD, Liu G, Gifford DK (2016) Convolutional neural network architectures for predicting dna–protein binding. Bioinformatics 32(12):i121–i127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang Y, Dong Z, Wu L, Wang S (2011) A hybrid method for mri brain image classification. Expert Syst Appl 38(8):10049–10053

    Article  Google Scholar 

  79. Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding variants with deep learning–based sequence model. Nat Methods 12:931–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza O. Ilhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed were in accordance and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards and ethical approval was obtained from Istanbul University, Faculty of Medicine.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilhan, H.O., Sigirci, I.O., Serbes, G. et al. A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods. Med Biol Eng Comput 58, 1047–1068 (2020). https://doi.org/10.1007/s11517-019-02101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02101-y

Keywords

Navigation