Skip to main content

Advertisement

Log in

A condition-independent framework for the classification of error-related brain activity

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The cognitive processing and detection of errors is important in the adaptation of the behavioral and learning processes. This brain activity is often reflected as distinct patterns of event-related potentials (ERPs) that can be employed in the detection and interpretation of the cerebral responses to erroneous stimuli. However, high-accuracy cross-condition classification is challenging due to the significant variations of the error-related ERP components (ErrPs) between complexity conditions, thus hindering the development of error recognition systems. In this study, we employed support vector machines (SVM) classification methods, based on waveform characteristics of ErrPs from different time windows, to detect correct and incorrect responses in an audio identification task with two conditions of different complexity. Since the performance of the classifiers usually depends on the salience of the features employed, a combination of the sequential forward floating feature selection (SFFS) and sequential forward feature selection (SFS) methods was implemented to detect condition-independent and condition-specific feature subsets. Our framework achieved high accuracy using a small subset of the available features both for cross- and within-condition classification, hence supporting the notion that machine learning techniques can detect hidden patterns of ErrP-based features, irrespective of task complexity while additionally elucidating complexity-related error processing variations.

A schematic of the proposed approach. (a) EEG recordings in an auditory experiment in two conditions of different complexity. (b) Characteristic event related activity feature extraction. (c) Selection of feature vector subsets for easy and hard conditions corresponding to correct (Class1) and incorrect (Class2) responses. (d) Performance for individual and cross-condition classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luck SJ, Kappenman ES (2011) The Oxford handbook of event-related potential components. Oxford University Press

  2. Wessel JR (2012) Error awareness and the error-related negativity: evaluating the first decade of evidence. Front Hum Neurosci 6:88. https://doi.org/10.3389/fnhum.2012.00088

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hewig J, Coles MGH, Trippe RH, Hecht H, Miltner WH (2011) Dissociation of Pe and ERN/ne in the conscious recognition of an error. Psychophysiology 48:1390–1396. https://doi.org/10.1111/j.1469-8986.2011.01209.x

    Article  PubMed  Google Scholar 

  4. Potts GF, Martin LE, Kamp S-M, Donchin E (2011) Neural response to action and reward prediction errors: comparing the error-related negativity to behavioral errors and the feedback-related negativity to reward prediction violations. Psychophysiology 48:218–228. https://doi.org/10.1111/j.1469-8986.2010.01049.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hauser TU, Iannaccone R, Stämpfli P, Drechsler R, Brandeis D, Walitza S, Brem S (2014) The feedback-related negativity (FRN) revisited: new insights into the localization, meaning and network organization. NeuroImage 84:159–168. https://doi.org/10.1016/j.neuroimage.2013.08.028

    Article  PubMed  Google Scholar 

  6. Vidal F, Hasbroucq T, Grapperon J, Bonnet M (2000) Is the ‘error negativity’ specific to errors? Biol Psychol 51:109–128. https://doi.org/10.1016/S0301-0511(99)00032-0

    Article  CAS  PubMed  Google Scholar 

  7. Simons RF (2010) The way of our errors: theme and variations. Psychophysiology 47:1–14. https://doi.org/10.1111/j.1469-8986.2009.00929.x

    Article  PubMed  Google Scholar 

  8. Keil J, Weisz N, Paul-Jordanov I, Wienbruch C (2010) Localization of the magnetic equivalent of the ERN and induced oscillatory brain activity. NeuroImage 51:404–411. https://doi.org/10.1016/j.neuroimage.2010.02.003

    Article  PubMed  Google Scholar 

  9. Steele VR, Anderson NE, Claus ED, Bernat EM, Rao V, Assaf M, Pearlson GD, Calhoun VD, Kiehl KA (2016) Neuroimaging measures of error-processing: extracting reliable signals from event-related potentials and functional magnetic resonance imaging. Neuroimage 132:247–260. https://doi.org/10.1016/j.neuroimage.2016.02.046

    Article  PubMed  PubMed Central  Google Scholar 

  10. Becker MPI, Nitsch AM, Miltner WHR, Straube T (2014) A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. J Neurosci 34:3005–3012. https://doi.org/10.1523/JNEUROSCI.3684-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen MX (2011) Error-related medial frontal theta activity predicts cingulate-related structural connectivity. NeuroImage 55:1373–1383. https://doi.org/10.1016/j.neuroimage.2010.12.072

    Article  PubMed  Google Scholar 

  12. Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR (2010) Conscious perception of errors and its relation to the anterior insula. Brain Struct Funct 214:629–643. https://doi.org/10.1007/s00429-010-0261-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Iannaccone R, Hauser TU, Staempfli P, Walitza S, Brandeis D, Brem S (2015) Conflict monitoring and error processing: new insights from simultaneous EEG–fMRI. NeuroImage 105:395–407. https://doi.org/10.1016/j.neuroimage.2014.10.028

    Article  PubMed  Google Scholar 

  14. Roger C, Bénar CG, Vidal F, Hasbroucq T, Burle B (2010) Rostral cingulate zone and correct response monitoring: ICA and source localization evidences for the unicity of correct- and error-negativities. Neuroimage 51:391–403. https://doi.org/10.1016/j.neuroimage.2010.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meckler C, Allain S, Carbonnell L et al (2011) Executive control and response expectancy: a Laplacian ERP study. Psychophysiology 48:303–311. https://doi.org/10.1111/j.1469-8986.2010.01077.x

    Article  PubMed  Google Scholar 

  16. Chavarriaga R, del Millan JR (2010) Learning from EEG error-related potentials in noninvasive brain-computer interfaces. IEEE Trans Neural Syst Rehab Eng 18:381–388. https://doi.org/10.1109/TNSRE.2010.2053387

    Article  Google Scholar 

  17. Kim SK, Kirchner EA (2013) Classifier transferability in the detection of error related potentials from observation to interaction. In: 2013 IEEE international conference on systems, man, and cybernetics. Pp 3360–3365

  18. Zhang H, Chavarriaga R, Khaliliardali Z, Gheorghe L, Iturrate I, Millán Jd (2015) EEG-based decoding of error-related brain activity in a real-world driving task. J Neural Eng 12:066028. https://doi.org/10.1088/1741-2560/12/6/066028

    Article  CAS  PubMed  Google Scholar 

  19. Chavarriaga R, Sobolewski A, Millán JDR (2014) Errare machinale Est: the use of error-related potentials in brain-machine interfaces. Front Neurosci 8:208. https://doi.org/10.3389/fnins.2014.00208

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ventouras EM, Asvestas P, Karanasiou I, Matsopoulos GK (2011) Classification of error-related negativity (ERN) and positivity (Pe) potentials using kNN and support vector machines. Comput Biol Med 41:98–109. https://doi.org/10.1016/j.compbiomed.2010.12.004

    Article  PubMed  Google Scholar 

  21. Plewan T, Wascher E, Falkenstein M, Hoffmann S (2016) Classifying response correctness across different task sets: a machine learning approach. PLoS One 11:e0152864. https://doi.org/10.1371/journal.pone.0152864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iturrate I, Montesano L, Minguez J (2013) Task-dependent signal variations in EEG error-related potentials for brain–computer interfaces. J Neural Eng 10:026024. https://doi.org/10.1088/1741-2560/10/2/026024

    Article  CAS  PubMed  Google Scholar 

  23. López-Larraz E, Creatura M, Iturrate I, et al (2011) EEG single-trial classification of visual, auditive and vibratory feedback potentials in brain-computer interfaces. In: 2011 annual international conference of the IEEE engineering in medicine and biology society. Pp 4231–4234

  24. Omedes J, Iturrate I, Montesano L, Minguez J (2013) Using frequency-domain features for the generalization of EEG error-related potentials among different tasks. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). Pp 5263–5266

  25. Balconi M, Crivelli D (2010) FRN and P300 ERP effect modulation in response to feedback sensitivity: the contribution of punishment-reward system (BIS/BAS) and behaviour identification of action. Neurosci Res 66:162–172. https://doi.org/10.1016/j.neures.2009.10.011

    Article  PubMed  Google Scholar 

  26. Van den Berg I, Franken IHA, Muris P (2011) Individual differences in sensitivity to reward. J Psychophysiol 25:81–86. https://doi.org/10.1027/0269-8803/a000032

    Article  Google Scholar 

  27. Weinberg A, Dieterich R, Riesel A (2015) Error-related brain activity in the age of RDoC: a review of the literature. Int J Psychophysiol 98:276–299. https://doi.org/10.1016/j.ijpsycho.2015.02.029

    Article  PubMed  Google Scholar 

  28. Iturrate I, Chavarriaga R, Montesano L, Minguez J, Millán J (2014) Latency correction of event-related potentials between different experimental protocols. J Neural Eng 11:036005. https://doi.org/10.1088/1741-2560/11/3/036005

    Article  CAS  PubMed  Google Scholar 

  29. Boldt A, Yeung N (2015) Shared neural markers of decision confidence and error detection. J Neurosci 35:3478–3484. https://doi.org/10.1523/JNEUROSCI.0797-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spüler M, Niethammer C (2015) Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity. Front Hum Neurosci 9:55. https://doi.org/10.3389/fnhum.2015.00155

    Article  Google Scholar 

  31. Yousefi R, Sereshkeh AR, Chau T (2019) Online detection of error-related potentials in multi-class cognitive task-based BCIs. Brain-Computer Interfaces 6:1–12. https://doi.org/10.1080/2326263X.2019.1614770

    Article  Google Scholar 

  32. Luo T, Fan Y, Lv J, Zhou C (2018) Deep reinforcement learning from error-related potentials via an EEG-based brain-computer interface. In: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM). Pp 697–701

  33. Hoffmann S, Falkenstein M (2010) Independent component analysis of erroneous and correct responses suggests online response control. Hum Brain Mapp 31:1305–1315. https://doi.org/10.1002/hbm.20937

    Article  PubMed  Google Scholar 

  34. Kaczkurkin AN (2013) The effect of manipulating task difficulty on error-related negativity in individuals with obsessive-compulsive symptoms. Biol Psychol 93:122–131. https://doi.org/10.1016/j.biopsycho.2013.01.001

    Article  PubMed  Google Scholar 

  35. Kim KH, Kim JH, Yoon J, Jung K-Y (2008) Influence of task difficulty on the features of event-related potential during visual oddball task. Neurosci Lett 445:179–183. https://doi.org/10.1016/j.neulet.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  36. Endrass T, Klawohn J, Gruetzmann R et al (2012) Response-related negativities following correct and incorrect responses: evidence from a temporospatial principal component analysis. Psychophysiology 49:733–743. https://doi.org/10.1111/j.1469-8986.2012.01365.x

    Article  PubMed  Google Scholar 

  37. Van der Borght L, Houtman F, Burle B, Notebaert W (2016) Distinguishing the influence of task difficulty on error-related ERPs using surface Laplacian transformation. Biol Psychol 115:78–85. https://doi.org/10.1016/j.biopsycho.2016.01.013

    Article  PubMed  Google Scholar 

  38. Karanasiou IS, Papageorgiou C, Tsianaka EI, Matsopoulos GK, Ventouras EM, Uzunoglu NK (2009) Behavioral and brain pattern differences between acting and observing in an auditory task. Behav Brain Funct 5:5. https://doi.org/10.1186/1744-9081-5-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moore BC, Glasberg BR (1983) Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am 74:750–753

    Article  CAS  Google Scholar 

  40. Ferrez PW, del Millan JR (2008) Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans Biomed Eng 55:923–929. https://doi.org/10.1109/TBME.2007.908083

    Article  PubMed  Google Scholar 

  41. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  42. Theodoridis S, Koutroumbas K (2008) Pattern recognition, fourth edition, 4th ed. Academic Press

  43. Pudil P, Novovičová J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15:1119–1125. https://doi.org/10.1016/0167-8655(94)90127-9

    Article  Google Scholar 

  44. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22:4–37. https://doi.org/10.1109/34.824819

    Article  Google Scholar 

  45. Wong T-T (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48:2839–2846. https://doi.org/10.1016/j.patcog.2015.03.009

    Article  Google Scholar 

  46. Hammerla NY, Plötz T (2015) Let’s (not) stick together: pairwise similarity biases cross-validation in activity recognition. In: Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing. ACM, New York, pp 1041–1051

    Chapter  Google Scholar 

  47. Theodoridis S, Koutroumbas K (2008) Pattern recognition, 4th edn. Academic Press, Amsterdam

    Google Scholar 

  48. Singla R, Chambayil B, Khosla A, Santosh J (2011) Comparison of SVM and ANN for classification of eye events in EEG. J Biomed Sci Eng 04:62–69. https://doi.org/10.4236/jbise.2011.41008

    Article  Google Scholar 

  49. Parvar H, Sculthorpe-Petley L, Satel J, Boshra R, D'Arcy RC, Trappenberg TP (2014) Detection of event-related potentials in individual subjects using support vector machines. Brain Inform 2:1–12. https://doi.org/10.1007/s40708-014-0006-7

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst Appl 39:202–209. https://doi.org/10.1016/j.eswa.2011.07.008

    Article  Google Scholar 

  51. Hughes G, Yeung N (2011) Dissociable correlates of response conflict and error awareness in error-related brain activity. Neuropsychologia 49:405–415. https://doi.org/10.1016/j.neuropsychologia.2010.11.036

    Article  PubMed  Google Scholar 

  52. Grützmann R, Endrass T, Klawohn J, Kathmann N (2014) Response accuracy rating modulates ERN and Pe amplitudes. Biol Psychol 96:1–7. https://doi.org/10.1016/j.biopsycho.2013.10.007

    Article  PubMed  Google Scholar 

  53. Baker TE, Holroyd CB (2011) Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200. Biol Psychol 87:25–34. https://doi.org/10.1016/j.biopsycho.2011.01.010

    Article  PubMed  Google Scholar 

  54. Gawlowska M, Domagalik A, Beldzik E, Marek T, Mojsa-Kaja J (2018) Dynamics of error-related activity in deterministic learning - an EEG and fMRI study. Sci Rep 8:14617. https://doi.org/10.1038/s41598-018-32995-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Choudhury NA, Parascando JA, Benasich AA (2015) Effects of presentation rate and attention on auditory discrimination: a comparison of long-latency auditory evoked potentials in school-aged children and adults. PLoS One 10:e0138160. https://doi.org/10.1371/journal.pone.0138160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ferdinand NK, Mecklinger A, Kray J, Gehring WJ (2012) The processing of unexpected positive response outcomes in the mediofrontal cortex. J Neurosci 32:12087–12092. https://doi.org/10.1523/JNEUROSCI.1410-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kreussel L, Hewig J, Kretschmer N, Hecht H, Coles MG, Miltner WH (2012) The influence of the magnitude, probability, and valence of potential wins and losses on the amplitude of the feedback negativity. Psychophysiology 49:207–219. https://doi.org/10.1111/j.1469-8986.2011.01291.x

    Article  PubMed  Google Scholar 

  58. Opitz B, Ferdinand NK, Mecklinger A (2011) Timing Matters: The Impact of Immediate and Delayed Feedback on Artificial Language Learning. Front Hum Neurosci 5:8. https://doi.org/10.3389/fnhum.2011.00008

    Article  PubMed  PubMed Central  Google Scholar 

  59. Krigolson OE, Hassall CD, Handy TC (2014) How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans. J Cogn Neurosci 26:635–644. https://doi.org/10.1162/jocn_a_00509

    Article  PubMed  Google Scholar 

  60. Chase HW, Swainson R, Durham L, Benham L, Cools R (2011) Feedback-related negativity codes prediction error but not behavioral adjustment during probabilistic reversal learning. J Cogn Neurosci 23:936–946. https://doi.org/10.1162/jocn.2010.21456

    Article  PubMed  Google Scholar 

  61. Sun Y, Wong AKC, Kamel MS (2009) Classification of imbalanced data: a review. Int J Pattern Recognit Artif Intell 23:687–719. https://doi.org/10.1142/S0218001409007326

    Article  Google Scholar 

  62. Haufe S, Meinecke F, Görgen K, Dähne S, Haynes JD, Blankertz B, Bießmann F (2014) On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87:96–110. https://doi.org/10.1016/j.neuroimage.2013.10.067

    Article  PubMed  Google Scholar 

  63. van Driel J, Ridderinkhof KR, Cohen MX (2012) Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-processing dynamics. J Neurosci 32:16795–16806. https://doi.org/10.1523/JNEUROSCI.0802-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gentsch A, Ullsperger P, Ullsperger M (2009) Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. Neuroimage 47:2023–2030. https://doi.org/10.1016/j.neuroimage.2009.05.064

    Article  PubMed  Google Scholar 

Download references

Funding

This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Kakkos.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interests..

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakkos, I., Ventouras, E.M., Asvestas, P.A. et al. A condition-independent framework for the classification of error-related brain activity. Med Biol Eng Comput 58, 573–587 (2020). https://doi.org/10.1007/s11517-019-02116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02116-5

Keywords

Navigation