Skip to main content
Log in

Computational prediction of the effect of D172N KCNJ2 mutation on ventricular pumping during sinus rhythm and reentry

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The understanding of cardiac arrhythmia under genetic mutations has grown in interest among researchers. Previous studies focused on the effect of the D172N mutation on electrophysiological behavior. In this study, we analyzed not only the electrophysiological activity but also the mechanical responses during normal sinus rhythm and reentry conditions by using computational modeling. We simulated four different ventricular conditions including normal case of ten Tusscher model 2006 (TTM), wild-type (WT), heterozygous (WT/D172N), and homozygous D172N mutation. The 2D simulation result (in wire-shaped mesh) showed the WT/D172N and D172N mutation shortened the action potential duration by 14%, and by 23%, respectively. The 3D electrophysiological simulation results showed that the electrical wavelength between TTM and WT conditions were identical. Under sinus rhythm condition, the WT/D172N and D172N reduced the pumping efficacy with a lower left ventricle (LV) and aortic pressures, stroke volume, ejection fraction, and cardiac output. Under the reentry conditions, the WT condition has a small probability of reentry. However, in the event of reentry, WT has shown the most severe condition. Furthermore, we found that the position of the rotor or the scroll wave substantially influenced the ventricular pumping efficacy during arrhythmia. If the rotor stays in the LV, it will cause very poor pumping performance.

A model of a ventricular electromechanical system. This whole model was established to observe the effect of D172N KCNJ2 mutation on ventricular pumping behavior during sinus rhythm and reentry conditions. The model consists of two components; electrical component and mechanical component. The electrophysiological model based on ten Tusscher et al. with the IK1 D172N KCNJ2 mutation, and the myofilament dynamic (cross-bridge) model based on Rice et al. study. The 3D electrical component is a ventricular geometry based on MRI which composed of nodes representing single-cell with electrophysiological activation. The 3D ventricular mechanic is a finite element mesh composed of single-cells myofilament dynamic model. Both components were coupled with Ca2+ concentration. We used Gaussian points for the calcium interpolation from the electrical mesh to the mechanical mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adeniran I, El Harchi A, Hancox JC, Zhang H (2012) Proarrhythmia in KCNJ2-linked short qt syndrome: insights from modelling. Cardiovasc Res 94(1):66–76

    Article  CAS  PubMed  Google Scholar 

  2. Ambrosi D, Arioli G, Nobile F, Quarteroni A (2011) Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J Appl Math 71(2):605–621

    Article  Google Scholar 

  3. Ambrosi D, Pezzuto S (2012) Active stress vs. active strain in mechanobiology: constitutive issues. J Elast 107(2):199–212

    Article  Google Scholar 

  4. Anttonen O, Junttila M, Rissanen H, Reunanen A, Viitasalo M, Huikuri H (2007) Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation 116(7):714–720

    Article  CAS  PubMed  Google Scholar 

  5. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, et al. (2007) Clinical perspective. Circulation 115(4):442–449

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berenfeld O, Jalife J (1998) Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ Res 82(10):1063–1077

    Article  CAS  PubMed  Google Scholar 

  7. Bernus O, Wilders R, Zemlin CW, Verschelde H, Panfilov AV (2002) A computationally efficient electrophysiological model of human ventricular cells. Am J Physiol Heart Circ Physiol 282(6):H2296–H2308

    Article  CAS  PubMed  Google Scholar 

  8. Bjerregaard P, Gussak I (2005) Short QT syndrome: mechanisms, diagnosis and treatment. Nat Rev Cardiol 2(2):84

    Article  Google Scholar 

  9. CHEN PS, Garfinkel A, Weiss JN, Karagueuzian HS (1997) Spirals, chaos, and new mechanisms of wave propagation. Pacing and Clinical Electrophysiology 20(2):414–421

    Article  CAS  PubMed  Google Scholar 

  10. Cherubini C, Filippi S, Gizzi A, Ruiz-Baier R (2017) A note on stress-driven anisotropic diffusion and its role in active deformable media. J Theor Biol 430:221–228

    Article  PubMed  Google Scholar 

  11. Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog Biophys Mol Biol 97(2-3):562–573

    Article  CAS  PubMed  Google Scholar 

  12. Clark DM, Plumb VJ, Epstein AE, Kay GN (1997) Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol 30(4):1039–1045

    Article  CAS  PubMed  Google Scholar 

  13. Clayton RH, Bailey A, Biktashev VN, Holden AV (2001) Re-entrant cardiac arrhythmias in computational models of long qt myocardium. J Theor Biol 208(2):215–225

    Article  CAS  PubMed  Google Scholar 

  14. Clayton RH, Holden AV (2002) Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study. Phys Med Biol 48(1):95

    Article  Google Scholar 

  15. Coronel R, Casini S, Koopmann TT, Wilms-Schopman FJ, Verkerk AO, de Groot JR, Bhuiyan Z, Bezzina CR, Veldkamp MW, Linnenbank AC, et al. (2005) Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circulation 112(18):2769–2777

    Article  PubMed  Google Scholar 

  16. Costabal FS, Concha FA, Hurtado DE, Kuhl E (2017) The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Comput Methods Appl Mech Eng 320:352–368

    Article  PubMed  PubMed Central  Google Scholar 

  17. Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol Heart Circ Physiol 275(1):H301–H321

    Article  CAS  Google Scholar 

  18. Da Un Jeong KML (2018) Influence of the KCNQ1 S140G mutation on human ventricular arrhythmogenesis and pumping performance: simulation study. Frontiers in Physiology 9

  19. Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A, Friedman L, Greene HL, et al. (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo: the cardiac arrhythmia suppression trial. New Engl J Med 324(12):781–788

    Article  CAS  PubMed  Google Scholar 

  20. El Harchi A, McPate MJ, hong Zhang Y, Zhang H, Hancox JC (2009) Action potential clamp and chloroquine sensitivity of mutant Kir2. 1 channels responsible for variant 3 short qt syndrome. J Mol Cell Cardiol 47(5):743–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Franz MR, Cima R, Wang D, Profitt D, Kurz R (1992) Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86(3):968–978

    Article  CAS  PubMed  Google Scholar 

  22. Gallagher MM, Magliano G, Yap YG, Padula M, Morgia V, Postorino C, Di Liberato F, Leo R, Borzi M, Romeo F (2006) Distribution and prognostic significance of QT intervals in the lowest half centile in 12,012 apparently healthy persons. Am J Cardiol 98(7):933–935

    Article  PubMed  Google Scholar 

  23. Giantesio G, Musesti A, Riccobelli D (2019) A comparison between active strain and active stress in transversely isotropic hyperelastic materials. J Elast, pp 1–20

  24. Giustetto C, Di Monte F, Wolpert C, Borggrefe M, Schimpf R, Sbragia P, Leone G, Maury P, Anttonen O, Haissaguerre M, et al. (2006) Short QT syndrome: clinical findings and diagnostic–therapeutic implications. Eur Heart J 27(20):2440– 2447

    Article  PubMed  Google Scholar 

  25. Gizzi A, Cherry E, Gilmour Jr RF, Luther S, Filippi S, Fenton FH (2013) Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue. Front Physiol 4:71

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gizzi A, Cherubini C, Filippi S, Pandolfi A (2015) Theoretical and numerical modeling of nonlinear electromechanics with applications to biological active media. Commun Comput Phys 17(1):93–126

    Article  Google Scholar 

  27. Gizzi A, Loppini A, Cherry E, Cherubini C, Fenton F, Filippi S (2017) Multi-band decomposition analysis: application to cardiac alternans as a function of temperature. Physiol Meas 38(5):833

    Article  CAS  PubMed  Google Scholar 

  28. Gizzi A, Loppini A, Ruiz-Baier R, Ippolito A, Camassa A, La Camera A, Emmi E, Di Perna L, Garofalo V, Cherubini C, et al. (2017) Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential. Chaos: An Interdisciplinary Journal of Nonlinear Science 27(9):093,919

    Article  CAS  Google Scholar 

  29. Guilleminault C, Connolly SJ, Winkle RA (1983) Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome. Am J Cardiol 52(5):490–494

    Article  CAS  PubMed  Google Scholar 

  30. Gurev V, Constantino J, Rice J, Trayanova N (2010) Distribution of electromechanical delay in the heart: insights from a three-dimensional electromechanical model. Biophys J 99(3):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gurev V, Lee T, Constantino J, Arevalo H, Trayanova NA (2011) Models of cardiac electromechanics based on individual hearts imaging data. Biomech Model Mechan 10(3):295–306

    Article  Google Scholar 

  32. Gussak I, Bjerregaard P (2005) Short qt syndrome—5 years of progress. J Electrocardiol 38(4):375–377

    Article  PubMed  Google Scholar 

  33. Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR, Bjerregaard P (2000) Idiopathic short QT interval: a new clinical syndrome? Cardiology 94(2):99–102

    Article  CAS  PubMed  Google Scholar 

  34. Hansen DE, Craig CS, Hondeghem LM (1990) Stretch-induced arrhythmias in the isolated canine ventricle. evidence for the importance of mechanoelectrical feedback. Circulation 81(3):1094–1105

    Article  CAS  PubMed  Google Scholar 

  35. Hastings HM, Fenton FH, Evans SJ, Hotomaroglu O, Geetha J, Gittelson K, Nilson J, Garfinkel A (2000) Alternans and the onset of ventricular fibrillation. Phys Rev E 62(3):4043

    Article  CAS  Google Scholar 

  36. Heikhmakhtiar AK, Rasyidin FA, Lim KM (2018) V241f kcnq1 mutation shortens electrical wavelength and reduces ventricular pumping capabilities: a simulation study with an electro-mechanical model. Front Phys 6:147

    Article  Google Scholar 

  37. Heikhmakhtiar AK, Ryu AJ, Shim EB, Song KS, Trayanova NA, Lim KM (2018) Influence of LVAD function on mechanical unloading and electromechanical delay: a simulation study. Medical & Biological Engineering & Computing pp 1–11

  38. Henriquez CS (2014) A brief history of tissue models for cardiac electrophysiology. IEEE Trans Biomed Eng 61(5):1457–1465

    Article  PubMed  Google Scholar 

  39. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu Y, Gurev V, Constantino J, Bayer JD, Trayanova NA (2013) Effects of mechano-electric feedback on scroll wave stability in human ventricular fibrillation. PloS One 8(4):e60,287

    Article  CAS  Google Scholar 

  41. Imaniastuti R, Lee HS, Kim N, Youm JB, Shim EB, Lim KM (2014) Computational prediction of proarrhythmogenic effect of the V241F KCNQ1 mutation in human atrium. Prog Biophys Mol Biol 116(1):70–75

    Article  CAS  PubMed  Google Scholar 

  42. Jalife J (2000) Ventricular fibrillation: mechanisms of initiation and maintenance. Annu Rev Physiol 62 (1):25–50

    Article  CAS  PubMed  Google Scholar 

  43. Jie X, Gurev V, Trayanova N (2010) Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circ Res 106(1):185–192

    Article  CAS  PubMed  Google Scholar 

  44. Karma A (1994) Electrical alternans and spiral wave breakup in cardiac tissue. Chaos: An Interdisciplinary Journal of Nonlinear Science 4(3):461–472

    Article  Google Scholar 

  45. Kerckhoffs RC, Neal ML, Gu Q, Bassingthwaighte JB, Omens JH, McCulloch AD (2007) Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35(1):1–18

    Article  PubMed  Google Scholar 

  46. Kohl P, Hunter P, Noble D (1999) Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog Biophys Mol Biol 71(1):91–138

    Article  CAS  PubMed  Google Scholar 

  47. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, et al. (2008) Heart disease and stroke statistics—2009 update. a report from the american heart association statistics committee and stroke statistics subcommittee Circulation

  48. Loppini A, Gizzi A, Ruiz-Baier R, Cherubini C, Fenton FH, Filippi S (2018) Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics. Frontiers in Physiology 9

  49. Luo C, Wang K, Wang Q, Yuan Y, Li Q, Li Z, Yuan M, Zhang H (2015) Investigation of the functional effects of KCN2-linked short QT syndrome on electrical conduction at purkinje-ventricle junction at low-and high-frequencies. In: Computing in Cardiology Conference (cinc), 2015, IEEE, pp s697–700

  50. Luo C, Wang K, Yuan M, Li Z, Wang Q, Yuan Y, Li Q, Zhang H (2015) Effects of amiodarone on ventricular excitation associated with the KCNJ2-linked short QT syndrome: insights from a modelling study. In: Computing in Cardiology Conference (cinc), 2015, IEEE, pp 1093–1096

  51. Luo Ch, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74(6):1071–1096

    Article  CAS  PubMed  Google Scholar 

  52. Matsuda H, Oishi K, Omori K (2003) Voltage-dependent gating and block by internal spermine of the murine inwardly rectifying K+ channel, Kir2. 1. J Physiol 548(2):361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moreno JD, Zhu ZI, Yang PC, Bankston JR, Jeng MT, Kang C, Wang L, Bayer JD, Christini DJ, Trayanova NA, et al. (2011) A computational model to predict the effects of class I anti-arrhythmic drugs on ventricular rhythms. Sci Transl Med 3(98):98ra83–98ra83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Moriya M, Seto S, Yano K, Akahoshi M (2007) Two cases of short QT interval. Pacing Clin Electrophysiol 30(12):1522–1526

    Article  PubMed  Google Scholar 

  55. Nygren A, Fiset C, Firek L, Clark J, Lindblad D, Clark R, Giles W (1998) Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ Res 82(1):63–81

    Article  CAS  PubMed  Google Scholar 

  56. O’Hara T, Virág L, Varró A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7(5):e1002,061

    Article  CAS  Google Scholar 

  57. Patel C, Yan GX, Antzelevitch C (2010) Short QT syndrome: from bench to bedside. Circ Arrhythmia Elec 3(4):401–408

    Article  Google Scholar 

  58. Plank G, Zhou L, Greenstein JL, Cortassa S, Winslow RL, O’Rourke B, Trayanova NA (2008) From mitochondrial ion channels to arrhythmias in the heart: computational techniques to bridge the spatio-temporal scales. Philosophical Transactions of the Royal Society of London A: Mathematical Phys Eng Sci 366(1879):3381–3409

    Article  Google Scholar 

  59. Priebe L, Beuckelmann DJ (1998) Simulation study of cellular electric properties in heart failure. Circ Res 82(11):1206–1223

    Article  CAS  PubMed  Google Scholar 

  60. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, Napolitano C, Anumonwo J, Di Barletta MR, Gudapakkam S, et al. (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 96(7):800–807

    Article  CAS  PubMed  Google Scholar 

  61. Provost J, Gurev V, Trayanova N, Konofagou EE (2011) Mapping of cardiac electrical activation with electromechanical wave imaging: an in silico–in vivo reciprocity study. Heart Rhythm 8(5):752–759

    Article  PubMed  Google Scholar 

  62. Quarteroni A, Lassila T, Rossi S, Ruiz-Baier R (2017) Integrated heart—coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput Methods Appl Mech Eng 314:345–407

    Article  Google Scholar 

  63. Rice JJ, Wang F, Bers DM, De Tombe PP (2008) Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 95(5):2368–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roberts BN, Yang PC, Behrens SB, Moreno JD, Clancy CE (2012) Computational approaches to understand cardiac electrophysiology and arrhythmias. Am J Physiol Heart Circ Physiol 303(7):H766–H783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruiz-Baier R, Ambrosi D, Pezzuto S, Rossi S, Quarteroni A (2013) Activation models for the numerical simulation of cardiac electromechanical interactions. In: Computer Models in Biomechanics, Springer, pp 189–201

  66. Ruiz-Baier R, Gizzi A, Rossi S, Cherubini C, Laadhari A, Filippi S, Quarteroni A (2014) Mathematical modelling of active contraction in isolated cardiomyocytes. Mathematical Medicine and Biology: A Journal of the IMA 31(3):259–283

    Article  PubMed  Google Scholar 

  67. Saucerman JJ, Healy SN, Belik ME, Puglisi JL, McCulloch AD (2004) Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation: computational models of whole cells and heterogeneous tissue. Circ Res 95(12):1216–1224

    Article  CAS  PubMed  Google Scholar 

  68. Ten Tusscher K, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286(4):H1573–H1589

    Article  CAS  PubMed  Google Scholar 

  69. Ten Tusscher K, Panfilov A (2006) Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Phys Med Biol 51(23):6141

    Article  CAS  PubMed  Google Scholar 

  70. Trayanova NA (2011) Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ Res 108(1):113–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Trayanova NA, Rice JJ (2011) Cardiac electromechanical models: from cell to organ. FrontPhysiol 2:43

    Google Scholar 

  72. Usyk TP, LeGrice IJ, McCulloch AD (2002) Computational model of three-dimensional cardiac electromechanics. Computing and Visualization in Science 4(4):249–257

    Article  Google Scholar 

  73. Vadakkumpadan F, Rantner LJ, Tice B, Boyle P, Prassl AJ, Vigmond E, Plank G, Trayanova N (2009) Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. J Electrocardiol 42(2):157–e1

    Article  PubMed  PubMed Central  Google Scholar 

  74. Viswanathan MN, Page R.L. (2007) Short QT: when does it matter?

  75. Wang K, Luo C, Yuan Y, Lu W, Zhang H (2014) Simulation of re-entrant wave dynamics in a 2-D sheet of human ventricle with KCNJ2-linked variant 3 short QT syndrome. In: Computing in Cardiology Conference (cinc), 2014, IEEE, pp 61–64

  76. Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen PS (1999) Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation 99(21):2819–2826

    Article  CAS  PubMed  Google Scholar 

  77. Wiggers CJ (1940) The mechanism and nature of ventricular fibrillation. Am Heart J 20(4):399–412

    Article  Google Scholar 

  78. Wilde AA, Bezzina CR (2005) Genetics of cardiac arrhythmias. Heart 91(10):1352–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuniarti AR, Setianto F, Marcellinus A, Hwang HJ, Choi SW, Trayanova N, Lim KM (2018) Effect of KCNQ1 G229D mutation on cardiac pumping efficacy and reentrant dynamics in ventricles: computational study. International journal for numerical methods in biomedical engineering, p e2970

  80. Zhao J, Butters TD, Zhang H, LeGrice IJ, Sands GB, Smaill BH (2013) Image-based model of atrial anatomy and electrical activation: a computational platform for investigating atrial arrhythmia. IEEE Trans Med Imaging 32(1):18–27

    Article  PubMed  Google Scholar 

  81. Zipes DP, Wellens HJ (1998) Sudden cardiac death. Circulation 98(21):2334–2351

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was partially supported by the NRF (National Research Foundation of Korea) under basic engineering research project (2016R1D1A1B0101440) and the EDISON (NRF-2011-0020576) Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Moo Lim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 32.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikhmakhtiar, A.K., Lee, C.H., Song, K.S. et al. Computational prediction of the effect of D172N KCNJ2 mutation on ventricular pumping during sinus rhythm and reentry. Med Biol Eng Comput 58, 977–990 (2020). https://doi.org/10.1007/s11517-020-02124-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02124-w

Keywords

Navigation