Skip to main content

Advertisement

Log in

Altered mechanical properties of actin fibers due to breast cancer invasion: parameter identification based on micropipette aspiration and multiscale tensegrity modeling

  • ORIGINAL ARTICLE
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The biophysical properties of cells change with cancer invasion to fulfill their metastatic behavior. Cell softening induced by cancer is highly associated with alterations in cytoskeleton fibers. Changes in the mechanical properties of cytoskeletal fibers have not been quantified due to technical limitations. In this study, we used the micropipette aspiration technique to calculate and compare the viscoelastic properties of non-invasive and invasive breast cancer cells. We evaluated the mechanical properties of actin fibers and microtubules of two cancerous cell lines by using multiscale tensegrity modeling and an optimization method. Cancer invasion caused altered viscoelastic behavior of cells and the results of modeling showed changes in mechanical properties of major cytoskeleton fibers. The stiffness and viscosity constant of actin fibers in non-invasive cells were 1.28 and 2.27 times higher than those of the invasive cells, respectively. However, changes in mechanical properties of microtubules were minor. Immunofluorescent staining of fibers and their quantified distributions confirmed altered actin distribution among two cell lines, in contrast to microtubule distribution. This study highlights the function of cytoskeletal fibers in cancer progression, which could be of interest in designing therapeutic strategies to target cancer progress.

Graphical abstract

Firstly, the viscoelastic behavior of non-invasive and invasive cells is examined with micropipette aspiration tests. A tensegrity model of cells is developed to mimic the viscoelastic behavior of cells, and tensegrity element stiffness is evaluated in an optimization procedure based on micropipette aspiration tests. Finally, by using immunofluorescent staining and confocal imaging, mechanical properties of actin filaments and microtubules of cancer cells are investigated during the course of metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kraning-Rush CM, Califano JP, Reinhart-King CA (2012) Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kassianidou E, Kumar S (2015) A biomechanical perspective on stress fiber structure and function. Biochim Biophys Acta (BBA)-Mol Cell Res 1853(11):3065–3074

    Article  CAS  Google Scholar 

  3. Zhang J, Wang C (2014) Molecular structural mechanics model for the mechanical properties of microtubules. Biomech Model Mechanobiol 13(6):1175–1184

    Article  CAS  PubMed  Google Scholar 

  4. Labouesse C, Gabella C, Meister JJ, Vianay B, Verkhovsky AB (2016) Microsurgery-aided in-situ force probing reveals extensibility and viscoelastic properties of individual stress fibers. Sci Rep 6:23722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katoh K, Kano Y, Masuda M, Onishi H, Fujiwara K (1998) Isolation and contraction of the stress fiber. Mol Biol Cell 9(7):1919–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu X, Pollack GH (2002) Mechanics of F-actin characterized with microfabricated cantilevers. Biophys J 83(5):2705–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Costa KD, Hucker WJ, Yin FC (2002) Buckling of actin stress fibers: a new wrinkle in the cytoskeletal tapestry. Cell Motil Cytoskeleton 52(4):266–274

    Article  PubMed  Google Scholar 

  8. Kojima H, Ishijima A, Yanagida T (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci 91(26):12962–12966

    Article  CAS  PubMed  Google Scholar 

  9. Kishino A, Yanagida T (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334(6177):74–76

    Article  CAS  PubMed  Google Scholar 

  10. Ebashi S, Ebashi F (1964) A new protein component participating in the superprecipitation of myosin B. J Biochem 55(6):604–613

    Article  CAS  PubMed  Google Scholar 

  11. Weber A, Winicur S (1961) The role of calcium in the superprecipitation of actomyosin. J Biol Chem 236(31):g8–g3202

    Google Scholar 

  12. Spicer SS (1951) Gel formation caused by adenosine triphosphate in actomyosin solutions. J Biol Chem 190(1):257–267

    Article  CAS  PubMed  Google Scholar 

  13. Satcher RL Jr, Dewey CF Jr (1996) Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J 71(1):109–118

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88(5):3707–3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coughlin MF, Stamenovic D (2003) A prestressed cable network model of the adherent cell cytoskeleton. Biophys J 84(2 Pt 1):1328–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ladjal H, Hanus JL, Ferreira A (2013) Micro-to-nano biomechanical modeling for assisted biological cell injection. IEEE Trans Biomed Eng 60(9):2461–2471

    Article  PubMed  Google Scholar 

  17. Stamenović D, Ingber DE (2002) Models of cytoskeletal mechanics of adherent cells. Biomech Model Mechanobiol 1(1):95–108

    Article  PubMed  Google Scholar 

  18. Stamenovic D, Coughlin MF (2000) A quantitative model of cellular elasticity based on tensegrity. J Biomech Eng 122(1):39–43

    Article  CAS  PubMed  Google Scholar 

  19. Canadas P et al (2002) A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton. J Theor Biol 218(2):155–173

    Article  PubMed  Google Scholar 

  20. Pozo-Guisado E, Alvarez-Barrientos A, Mulero-Navarro S, Santiago-Josefat B, Fernandez-Salguero PM (2002) The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem Pharmacol 64(9):1375–1386

    Article  CAS  PubMed  Google Scholar 

  21. Nematbakhsh Y, Pang KT, Lim CT (2017) Correlating the viscoelasticity of breast cancer cells with their malignancy. Convergent Sci Phys Oncol 3(3):034003

    Article  Google Scholar 

  22. Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):609–613

    Article  CAS  PubMed  Google Scholar 

  23. Guilak F, Alexopoulos LG, Haider MA, Ting-Beall HP, Setton LA (2005) Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization. Ann Biomed Eng 33(10):1312–1318

    Article  PubMed  Google Scholar 

  24. Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269(3):781–786

    Article  CAS  PubMed  Google Scholar 

  25. Theret DP, Levesque MJ, Sato M, Nerem RM, Wheeler LT (1988) The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J Biomech Eng 110(3):190–199

    Article  CAS  PubMed  Google Scholar 

  26. Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33(1):15–22

    Article  CAS  PubMed  Google Scholar 

  27. Yu H, Tay CY, Leong WS, Tan SCW, Liao K, Tan LP (2010) Mechanical behavior of human mesenchymal stem cells during adipogenic and osteogenic differentiation. Biochem Biophys Res Commun 393(1):150–155

    Article  CAS  PubMed  Google Scholar 

  28. Tan SC, Pan WX, Ma G, Cai N, Leong KW, Liao K (2008) Viscoelastic behaviour of human mesenchymal stem cells. BMC Cell Biol 9(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nikkhah M, Strobl JS, de Vita R, Agah M (2010) The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures. Biomaterials 31(16):4552–4561

    Article  CAS  PubMed  Google Scholar 

  30. Stamenović D, Fredberg JJ, Wang N, Butler JP, Ingber DE (1996) A microstructural approach to cytoskeletal mechanics based on tensegrity. J Theor Biol 181(2):125–136

    Article  PubMed  Google Scholar 

  31. Wendling S, Oddou C, Isabey D (1999) Stiffening response of a cellular tensegrity model. J Theor Biol 196(3):309–325

    Article  CAS  PubMed  Google Scholar 

  32. Mohri F, Motro R (1993) Static and kinematic determination of generalized space reticulated systems. Struct Eng Rev 5(3):231–237

    Google Scholar 

  33. Canadas P et al (2003) Mechanisms governing the visco-elastic responses of living cells assessed by foam and tensegrity models. Med Biol Eng Comput 41(6):733–739

    Article  CAS  PubMed  Google Scholar 

  34. Mofrad MR, Kamm RD (2006) Cytoskeletal mechanics: models and measurements in cell mechanics. Cambridge University Press

  35. Khani MM, Tafazzoli-Shadpour M, Rostami M, Peirovi H, Janmaleki M (2014) Evaluation of mechanical properties of human mesenchymal stem cells during differentiation to smooth muscle cells. Ann Biomed Eng 42(7):1373–1380

    Article  PubMed  Google Scholar 

  36. Pachenari M, Seyedpour SM, Janmaleki M, Shayan SB, Taranejoo S, Hosseinkhani H (2014) Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: investigating different grades of colon cancer cell lines. J Biomech 47(2):373–379

    Article  CAS  PubMed  Google Scholar 

  37. Mogilner A, Manhart A (2018) Intracellular fluid mechanics: coupling cytoplasmic flow with active cytoskeletal gel. Annu Rev Fluid Mech 50:347–370

    Article  Google Scholar 

  38. Quinlan ME (2016) Cytoplasmic streaming in the Drosophila oocyte. Annu Rev Cell Dev Biol 32:173–195

    Article  CAS  PubMed  Google Scholar 

  39. Gross SR (2013) Actin binding proteins: their ups and downs in metastatic life. Cell Adhes Migr 7(2):199–213

    Article  Google Scholar 

  40. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B (2012) 3D traction forces in cancer cell invasion. PLoS One 7(3):e33476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55(12):3989–4014

    Article  CAS  Google Scholar 

  43. Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28(1–2):113–127

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1–2):15–33

    Article  PubMed  Google Scholar 

  45. Kemp JP, Brieher WM (2018) The actin filament bundling protein α-actinin-4 actually suppresses actin stress fibers by permitting actin turnover. J Biol Chem 293(37):14520–14533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang R et al (2020) Dynamin regulates the dynamics and mechanical strength of the actin cytoskeleton as a multifilament actin-bundling protein. Nat Cell Biol:1–15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tafazzoli-Shadpour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaei, M., Tafazzoli-Shadpour, M. & Khani, M.M. Altered mechanical properties of actin fibers due to breast cancer invasion: parameter identification based on micropipette aspiration and multiscale tensegrity modeling. Med Biol Eng Comput 59, 547–560 (2021). https://doi.org/10.1007/s11517-021-02318-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02318-w

Keywords

Navigation