Skip to main content
Log in

An atlas of classifiers—a machine learning paradigm for brain MRI segmentation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We present the Atlas of Classifiers (AoC)—a conceptually novel framework for brain MRI segmentation. The AoC is a spatial map of voxel-wise multinomial logistic regression (LR) functions learned from the labeled data. Upon convergence, the resulting fixed LR weights, a few for each voxel, represent the training dataset. It can, therefore, be considered as a light-weight learning machine, which despite its low capacity does not underfit the problem. The AoC construction is independent of the actual intensities of the test images, providing the flexibility to train it on the available labeled data and use it for the segmentation of images from different datasets and modalities. In this sense, it does not overfit the training data, as well. The proposed method has been applied to numerous publicly available datasets for the segmentation of brain MRI tissues and is shown to be robust to noise and outreach commonly used methods. Promising results were also obtained for multi-modal, cross-modality MRI segmentation. Finally, we show how AoC trained on brain MRIs of healthy subjects can be exploited for lesion segmentation of multiple sclerosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Estimation of tissues’ intensities using normal distributions is subject to the removal of the bias field either before or during the segmentation process.

  2. MRBrainS13 challenge: https://mrbrains13.isi.uu.nl/results/

  3. SPM package:http://www.fil.ion.ucl.ac.uk/spm

  4. This data was provided by the challenge organizers upon our request.

References

  1. Akkus Z, Galimzianova A, Hoogi A, Rubin D, Erickson B (2017) Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 30(4):449–459

    Article  Google Scholar 

  2. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    Article  Google Scholar 

  3. Bishop CM (2006) Pattern recognition. Mach Learn: 128

  4. Blaiotta C, Freund P, Cardoso MJ, Ashburner J (2018) Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction. Neuroimage 166:117–134

    Article  Google Scholar 

  5. Brouwer RM, Pol HEH, Schnack HG (2010) Segmentation of MRI brain scans using non-uniform partial volume densities. Neuroimage 49(1):467–477

    Article  Google Scholar 

  6. Carass A, Roy S, Jog A, et al. (2017) Longitudinal multiple sclerosis lesion segmentation: resource and challenge. Neuroimage 148:77–102

    Article  Google Scholar 

  7. Carass A, Roy S, Jog A, et al. (2017) Longitudinal multiple sclerosis lesion segmentation: resource and challenge. Data in Brief 12:346–350

    Article  Google Scholar 

  8. Cárdenas-Peña D., Fernández E., Ferrández-Vicente J. M., Castellanos-Domínguez G (2017) Multi-atlas label fusion by using supervised local weighting for brain image segmentation. Tecno Ló,gicas 20(39):211–227

    Google Scholar 

  9. Cicek O, Abdulkadir A, Lienkamp S, Brox T, Ronneberger O (2016) 3D u-Net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, pp 424–432

  10. Cocosco CA, Kollokian V, Kwan RKS, Pike GB, Evans AC (1997) Brainweb: online interface to a 3D MRI simulated brain database. Neuroimage 5:425

    Google Scholar 

  11. Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17(3):463–468

    Article  CAS  Google Scholar 

  12. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J Royal Stat Soc Ser B (Methodological) 39(1):1–22

    Google Scholar 

  13. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26 (3):297–302

    Article  Google Scholar 

  14. Dora L, Agrawal S, Panda R, Abraham A (2017) State-of-the-art methods for brain tissue segmentation: a review. IEEE Rev Biomed Eng 10:235–249

    Article  Google Scholar 

  15. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Article  CAS  Google Scholar 

  16. Goldberger J, Greenspan H (2006) Context-based segmentation of image sequences. IEEE Trans Pattern Anal Mach Intell 28(3):463–468

    Article  Google Scholar 

  17. Greenspan H, Ruf A, Goldberger J (2006) Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imaging 25(9):1233–1245

    Article  Google Scholar 

  18. Guo P (2017) Brain tissue classification method for clinical decision-support systems. Eng Appl Artif Intel 64:232–241

    Article  Google Scholar 

  19. Gupta L, Sortrakul T (1998) A gaussian-mixture-based image segmentation algorithm. Pattern Recogn 31(3):315–325

    Article  Google Scholar 

  20. Hou B, Kang G, Zhang N, Hu C (2018) Robust 3D convolutional neural network with boundary correction for accurate brain tissue segmentation. IEEE Access: 6

  21. Huang M, Yang W, Feng Q, Chen W (2017) Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease. Sci Rep 7(1):1–13

    Article  CAS  Google Scholar 

  22. Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24(1):205–219

    Article  Google Scholar 

  23. Isensee F, Jaeger P, Kohl S, Petersen J (2021) Maier-Hein, K.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211

    Article  CAS  Google Scholar 

  24. Kodner B, Gordon S, Goldberger J, Riklin Raviv T (2017) Atlas of classifiers for brain MRI segmentation. In: MICCAI’s international workshop on machine learning in medical imaging, pp 36–44

  25. Kong Y, Deng Y, Dai Q (2015) Discriminative clustering and feature selection for brain MRI segmentation. IEEE Signal Process Lett 22(5):573–577

    Article  Google Scholar 

  26. Kwan RKS, Evans AC, Pike GB (1996) An extensible MRI simulator for post-processing evaluation. In: Visualization in biomedical computing. Springer, pp 135–140

  27. Kwan RS, Evans AC, Pike GB (1999) MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging 18(11):1085–1097

    Article  CAS  Google Scholar 

  28. Li J, Yu Z, Gu Z, Liu H, Li Y (2019) MMAN: multi-modality aggregation network for brain segmentation from MR images. Neurocomputing 358:10–19

    Article  Google Scholar 

  29. Liu M, Zhang D, Shen D (2012) Ensemble sparse classification of alzheimer’s disease. Neuroimage 60(2):1106–1116

    Article  Google Scholar 

  30. Liu X, Chen F (2014) Automatic segmentation of 3-d brain MR images by using global tissue spatial structure information. IEEE Trans Appl Supercond 24(5):1–5

    Article  Google Scholar 

  31. Marroquin JL, Vemuri BC, Botello S, Calderon E, Fernandez-Bouzas A (2002) An accurate and efficient bayesian method for automatic segmentation of brain MRI. IEEE Trans Med Imaging 21(8):934–945

    Article  CAS  Google Scholar 

  32. Mayer A, Greenspan H (2009) An adaptive mean-shift framework for MRI brain segmentation. IEEE Trans Med Imaging 28(8):1238–1250

    Article  Google Scholar 

  33. Mcgill (2018) BrainWeb http://www.bic.mni.mcgill.ca/brainweb/

  34. Mendrik AM, Vincken KL, Kuijf HJ, Breeuwer M, Bouvy WH, De Bresser J, Alansary A, De Bruijne M, Carass A, El-Baz A, et al. (2015) Mrbrains challenge: online evaluation framework for brain image segmentation in 3T MRI scans. Comput Intell Neurosci 2015:1

    Article  Google Scholar 

  35. Nyul L, Udupa J (1999) On standardizing the mr image intensity scale. Magn Reson Med 42:1072–1081

    Article  CAS  Google Scholar 

  36. Pereira S, Pinto A, Oliveira J, Mendrik AM, Correia JH, Silva CA (2016) Automatic brain tissue segmentation in MR images using random forests and conditional random fields. J Neurosci Methods 270:111–123

    Article  Google Scholar 

  37. Pohl KM, Bouix S, Nakamura M, Rohlfing T, McCarley RW, Kikinis R, Grimson WEL, Shenton ME, Wells WM (2007) A hierarchical algorithm for MR brain image parcellation. IEEE Trans Med Imaging 26(9):1201–1212

    Article  Google Scholar 

  38. Ribbens A, Hermans J, Maes F, Vandermeulen D, Suetens P (2014) Unsupervised segmentation, clustering, and groupwise registration of heterogeneous populations of brain MR images. IEEE Trans Med Imaging 33(2):201–224

    Article  Google Scholar 

  39. Rohlfing T (2012) Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans Med Imaging 31(2):153–163

    Article  Google Scholar 

  40. Rohlfing T, Brandt R, Menzel R, Maurer Jr CR (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21 (4):1428–1442

  41. Roy S, He Q, Sweeney E, Carass A, Reich DS, Prince JL, Pham DL (2015) Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation. IEEE J Biomed Health Inform 19 (5):1598–1609

    Article  Google Scholar 

  42. Utrecht University Medical Center (2018) MRBrains13 http://mrbrains13.isi.uu.nl/results.php/

  43. Valverde S, Oliver A, Cabezas M, Roura E, Lladó X. (2015) Comparison of 10 brain tissue segmentation methods using revisited ibsr annotations. J Magn Reson Imaging 41(1):93–101

    Article  Google Scholar 

  44. Van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908

    Article  Google Scholar 

  45. Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45:61–72

    Article  Google Scholar 

  46. Wang L, Gao Y, Shi F, Li G, Gilmore JH, Lin W, Shen D (2015) Links: Learning-based multi-source integration framework for segmentation of infant brain images. Neuroimage 108:160–172

    Article  Google Scholar 

  47. Wells WM, Grimson WEL, Kikinis R, Jolesz FA (1996) Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15(4):429–442

    Article  CAS  Google Scholar 

  48. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would also like to thank the MRBrainS13 organizers for their help with the cross-modality evaluation on the MRBrainS13 test set. Specifically we would like to thank Adrienne Mendrik and Edwin Bennink for running the evaluation.

Funding

This study was partially supported by the Israel Science Foundation (1638/16, T.R.R) and by the the Israeli Ministry of Science & Technology (J.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy Riklin Raviv.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, S., Kodner, B., Goldfryd, T. et al. An atlas of classifiers—a machine learning paradigm for brain MRI segmentation. Med Biol Eng Comput 59, 1833–1849 (2021). https://doi.org/10.1007/s11517-021-02414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02414-x

Keywords

Navigation