Skip to main content

Advertisement

Log in

ConvNets for automatic detection of polyglutamine SCAs from brain MRIs: state of the art applications

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Polyglutamine spinocerebellar ataxias (polyQ SCAs) are a group of neurodegenerative diseases, clinically and genetically heterogeneous, characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its connections. The diagnosis of each type of polyQ SCA, alongside with genetic tests, includes medical images analysis, and its automation may help specialists to distinguish between each type. Convolutional neural networks (ConvNets or CNNs) have been recently used for medical image processing, with outstanding results. In this work, we present the main clinical and imaging features of polyglutamine SCAs, and the basics of CNNs. Finally, we review studies that have used this approach to automatically process brain medical images and may be applied to SCAs detection. We conclude by discussing the possible limitations and opportunities of using ConvNets for SCAs diagnose in the future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. These data were provided for use in the MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling [B. Landman, S. Warfield, MICCAI 2012 workshop on multi-atlas labeling, in: MICCAI Grand Challenge and Workshop on Multi-Atlas Labeling, CreateSpace Independent Publishing Platform, Nice, France, 2012.]. The data is released under the Creative Commons Attribution-NonCommercial license (CC BY-NC) with no end date. Original MRI scans are from OASIS (https://www.oasis-brains.org/). Labeling were provided by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) under academic subscription.

References

  1. Dueñas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357–1370. https://doi.org/10.1093/brain/awl081

    Article  Google Scholar 

  2. Stevanin G, Brice A (2008) Spinocerebellar ataxia 17 ( SCA17 ) and Huntington ’ s disease-like 4 ( HDL4 ). Cerebellum. 7. https://doi.org/10.1007/s12311-008-0016-1

  3. Manto M (2005) The wide spectrum of spinocerebellar ataxias ( SCAs ). The Cerebellum 4:2–6. https://doi.org/10.1080/14734220510007914

    Article  Google Scholar 

  4. Teive HAG (2009) Spinocerebellar ataxias. Arq Neuropsiquiatr 67:1133–1142. https://doi.org/10.1590/S0004-282X2009000600035

    Article  Google Scholar 

  5. Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias — from genes to potential treatments. Nat Publ Gr 18:613–626. https://doi.org/10.1038/nrn.2017.92

    Article  Google Scholar 

  6. Klaes A, Reckziegel E, Franca MC, Rezende TJ, Vedolin LM, Jardim LB, Saute JA (2016) MR Imaging in Spinocerebellar Ataxias : A Systematic Review. Am J f Neuroradiol 37:1405–1412

    Article  Google Scholar 

  7. Van De Warrenburg BPC, Sinke RJ, Bemelmans CCV, Scheffer H (2002) Spinocerebellar ataxias in the Netherlands. Neurology. 58:702–708. https://doi.org/10.1212/WNL.58.5.702

    Article  Google Scholar 

  8. Erichsen AK, Koht ÃJ, Stray-pedersen ÃA, Abdelnoor M, Tallaksen CME (2009) Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway : a population-based study. Brain 132:1577–1588. https://doi.org/10.1093/brain/awp056

    Article  Google Scholar 

  9. Reetz K, Rodríguez R, Dogan I, Mirzazade S, Romanzetti S, Schulz JB, Cruz-Rivas EM, Alvarez-Cuesta JA, Aguilera Rodríguez R, Gonzalez Zaldivar Y, Auburger G, Velázquez-Pérez L (2018) Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2. Ann Clin Transl Neurol 5:128–137. https://doi.org/10.1002/acn3.504

    Article  Google Scholar 

  10. Bang OY, Lee PH, Kim SY, Kim HJ, Huh K (2004) Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry 75:1452–1457. https://doi.org/10.1136/jnnp.2003.029819

    Article  Google Scholar 

  11. Buijsen RAM, Toonen LJA, Gardiner SL, Roon-Mom WMC (2019) Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 16:263–286. https://doi.org/10.1007/s13311-018-00696-y

    Article  Google Scholar 

  12. Nethisinghe S, Lim WN, Ging H, Zeitlberger A, Abeti R, Pemble S, Sweeney MG, Labrum R, Cervera C, Houlden H, Rosser E, Limousin P, Kennedy A, Lunn MP, Bhatia KP, Wood NW, Hardy J, Polke JM, Veneziano L, Brusco A, Davis MB (2018) Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17. Front Cel Neurosci 12:1–10. https://doi.org/10.3389/fncel.2018.00429

    Article  Google Scholar 

  13. Taroni F, Didonato S (2004) Pathways to motor incoordination: the inherited ataxias. Neuroscience 5:641–655. https://doi.org/10.1038/nrn1474

    Article  Google Scholar 

  14. Velázquez L, García R, Santos N, Paneque M, Medina E, Hechavarría R (2001) Las ataxias hereditarias en Cuba. Aspectos históricos, epidemiológicos, clínicos, electrofisiológicos y de neurología cuantitativa. Rev Neurol. 32:71. https://doi.org/10.33588/rn.3201.2000283

    Article  Google Scholar 

  15. Alex J, Saute M, Jardim LB (2015) Machado Joseph disease : clinical and genetic aspects, and current treatment. Expert Opin Orphan Drugs 3:517–535. https://doi.org/10.1517/21678707.2015.1025747

    Article  Google Scholar 

  16. Toyoshima Y, Onodra O, Yamada M, Tsuji S, Takahashi H (2019) Spinocerebellar Ataxia Type 17. In: Adam MP, Ardinger HH and Pagon RA (eds.) GeneReviews® [Internet]. University of Washington, Seattle

  17. Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zühlke C, Nitschke M, Brockmann K, Klein C, Rolfs A, Binkofski F (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 ( SCA17). Brain 129:2341–2352. https://doi.org/10.1093/brain/awl148

    Article  Google Scholar 

  18. Mascalchi M, Vella A (2018) Neuroimaging Applications in Chronic Ataxias. Int Rev Neurobiol 143:109–162. https://doi.org/10.1016/bs.irn.2018.09.011

    Article  Google Scholar 

  19. Baldarçara L, Currie S, Hadjivassiliou M, Hoggard N, Jack A, Jackowski AP, Mascalchi M, Parazzini C, Reetz K, Righini A, Schulz JB, Vella A, Webb SJ, Habas C (2014) Consensus Paper : Radiological Biomarkers of Cerebellar Diseases. Cerebellum 14:175–196. https://doi.org/10.1007/s12311-014-0610-3

    Article  Google Scholar 

  20. Kumar SD, Chand RP, Gururaj AK, Jeans WD (1995) CT features of olivopontocerebellar atrophy in children. Acta radiol 36:593–596. https://doi.org/10.1177/028418519503600458

    Article  Google Scholar 

  21. Meira AT, Arruda WO, Ono SE, Neto ADC, Raskin S, Camargo CH, Teive HAG (2019) Neuroradiological Findings in the Spinocerebellar Ataxias. Tremor and Other Hyperkinetic Movements. 1–8. https://doi.org/10.7916/tohm.v0.682

  22. Seidel K, Siswanto S, Brunt ERP, Den Dunnen W, Korf HW, Rüb U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21. https://doi.org/10.1007/s00401-012-1000-x

    Article  Google Scholar 

  23. Kim Y, Kondo M, Sunami Y, Kawata A (2014) MRI Findings in Spinocerebellar Ataxias. J Neurol Disord Stroke 2:1072

    Google Scholar 

  24. Schulz JB, Borkert J, Wolf S, Schmitz-hübsch T, Rakowicz M, Mariotti C, Schoels L, Timmann D, Van De Warrenburg B, Dürr A, Pandolfo M, Kang J, González A, Nägele T, Grisoli M, Boguslawska R, Bauer P, Klockgether T, Hauser T (2010) Visualization, quanti fi cation and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 49:158–168. https://doi.org/10.1016/j.neuroimage.2009.07.027

    Article  Google Scholar 

  25. Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M, Boguslawska R, Schöls L, Linnemann C, Mariotti C, Grisoli M, Dürr A, Van De Warrenburg B, Timmann D, Pandolfo M, Bauer P, Jacobi H, Hauser T, Klockgether T, Schulz JB (2013) Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6 Kathrin. https://doi.org/10.1093/brain/aws369

  26. Inagaki A, Iida A, Matsubara M, Inagaki H (2005) Positron emission tomography and magnetic resonance imaging in spinocerebellar ataxia type 2: A study of symptomatic and asymptomatic individuals. Eur J Neurol 12:725–728. https://doi.org/10.1111/j.1468-1331.2005.01011.x

    Article  Google Scholar 

  27. Nave RD, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, Sartucci F, Michele G. De, Dotti MT, Piacentini S, Mascalchi M (2008) Brain Structural Damage in Spinocerebellar Ataxia Type 2. A Voxel-Based Morphometry Study. Mov Disord. 23:899–903. https://doi.org/10.1002/mds.21982

    Article  Google Scholar 

  28. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Spinocerebellar ataxias Review Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Decubitis 3:291–304. https://doi.org/10.4324/9780429456916-3

    Article  Google Scholar 

  29. Murata Y, Yamaguchi S, Kawakami H, Imon Y, Maruyama H, Sakai T, Kazuta T, Ohtake T, Nishimura M, Saida T, Chiba S, Oh-I T, Nakamura S (1998) Characteristic magnetic resonance imaging findings in Machado-Joseph disease. Arch Neurol 55:33–37. https://doi.org/10.1001/archneur.55.1.33

    Article  Google Scholar 

  30. Soong B, Paulson HL (2007) Spincocerebellar ataxias: An update. Curr Opin Neurol 33:150–160. https://doi.org/10.1097/WCO.0000000000000774

    Article  Google Scholar 

  31. Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P (2016) A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis 11:1–9. https://doi.org/10.1186/s13023-016-0447-6

    Article  Google Scholar 

  32. Mariotti C, Alpini D, Fancellu R, Soliveri P, Grisolo M, Ravaglia M, Lovati C, Fetoni V, Giaccone G, Castucci A, Taroni F, Gellera C, Donato SD (2007) Spinocerebellar ataxia type 17 ( SCA17): Oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol 254:1538–1546. https://doi.org/10.1007/s00415-007-0579-7

    Article  Google Scholar 

  33. Zhang J, Gu W, Hao Y, Chen Y (2013) Spinocerebellar ataxia 17 : Inconsistency between phenotype and neuroimage findings. 16, 703–704. https://doi.org/10.4103/0972-2327.120457

  34. Loy CT, Epi MC, Sweeney MG, Davis MB, Wills AJ, Sawle GV, Lees AJ, Tabrizi SJ (2005) Spinocerebellar Ataxia Type 17: Extension of Phenotype With Putaminal Rim Hyperintensity on Magnetic Resonance Imaging. Mov Disord 20:1521–1528. https://doi.org/10.1002/mds.20529

    Article  Google Scholar 

  35. Carroll LS, Massey TH, Wardle M, Peall KJ (2018) Dentatorubral-pallidoluysian Atrophy : An Update. Tremor and Other Hyperkinetic Movements. 8, https://doi.org/10.7916/D81N9HST

  36. Sugiyama A, Sato N, Nakata Y, Kimura Y, Enokizono M (2017) Clinical and magnetic resonance imaging features of elderly onset dentatorubral – pallidoluysian atrophy. J Neurol 265:322–329. https://doi.org/10.1007/s00415-017-8705-7

    Article  Google Scholar 

  37. Shao F, Xie X (2013) An overview on interactive medical image segmentation. Annals of the BMWA 2013(7):1–22

  38. Van Der Lijn F, De Bruijne M, Hoogendam YY, Klein S, Hameeteman R, Breteler MMB, Niessen WJ (2009) Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. pp. 221–224

  39. Saeed N, Puri BK (2002) Cerebellum segmentation employing texture properties and knowledge based image processing : applied to normal adult controls and patients. Magn Reson Imaging 20:425–429

    Article  Google Scholar 

  40. Cardoso MJ, Melbourne A, Kendall GS, Modat M, Robertson NJ, Marlow N, Ourselin S (2013) AdaPT : An adaptive preterm segmentation algorithm for neonatal brain MRI. Neuroimage 65:97–108. https://doi.org/10.1016/j.neuroimage.2012.08.009

    Article  Google Scholar 

  41. Makris N, Hodge SM, Haselgrove C, Kennedy DN, Dale A, Fischl B, Rosen BR, Harris G, Caviness VS, Schmahmann JD (2003) Human Cerebellum : Surface-Assisted Cortical Parcellation and Volumetry with Magnetic Resonance Imaging. J Cogn Neurosci 15:584–599

    Article  Google Scholar 

  42. Romero J, Coupé P, Giraud R, Ta V, Fonov V, Park MT, Chakravarty M, Voineskos A, Manjón J (2016) CERES : A new cerebellum lobule segmentation method. Neuroimage 147:916–924

    Article  Google Scholar 

  43. Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138. https://doi.org/10.1016/j.neuroimage.2006.05.056

    Article  Google Scholar 

  44. Carass A, Cuzzocreo JL, Han S, Hernandez-castillo CR, Rasser PE, Ganz M, Beliveau V, Dolz J, Ayed IB, Desrosiers C, Thyreau B, Fonov VS, Collins DL, Ying SH, Onyike CU, Landman BA, Mostofsky SH, Thompson PM, Prince JL (2018) Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. Neuroimage. 183:150–172. https://doi.org/10.1016/j.neuroimage.2018.08.003.Comparing

    Article  Google Scholar 

  45. De Brébisson A, Montana G (2015) Deep Neural Networks for Anatomical Brain Segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition works. pp. 20–28

  46. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to digit recognition. Neural Comput 1:541–551

    Article  Google Scholar 

  47. Zeiler MD, Fergus R (2014) Visualizing and Understanding Convolutional Networks. Anal Chem Res 12:818–833. https://doi.org/10.1016/j.ancr.2017.02.001

    Article  Google Scholar 

  48. Fukushima K (1980) Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol Cybern 36:193–202

    Article  Google Scholar 

  49. Hariharan B, Arbeláez P, Bourdev L, Maji S, Malik J (2011) Semantic Contours from Inverse Detectors. In: International Conference on Computer Vision. pp. 991–998

  50. Wang L, Ouyang W, Wang X, Lu H (2015) Visual Tracking with Fully Convolutional Networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3119–3127

  51. Jaroensri R, Zhao A, Balakrishnan G, Lo D, Schmahmann JD, Durand F, Guttag J (2017) A Video-Based Method for Automatically Rating Ataxia. In: Proceedings of Machine Learning. pp. 1–13

  52. El Amin AM, Liu Q, Wang Y (2016) Convolutional neural network features based change detection in satellite images. First International Workshop on Pattern Recognition. 10011. pp. 181–186

  53. Kawahara C, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, Zwicker JG, Hamarneh G (2017) BrainNetCNN : Convolutional Neural Networks for Brain Networks Towards Predicting Neurodevelopment. Neuroimage 146:1038–1049

    Article  Google Scholar 

  54. Stoean C, Stoean R, Atencia M, Abdar M, Velázquez-Pérez L, Khosrabi A, Nahavandi S, Acharya UR, Joya G (2020) Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals. Sensors 20:3032. https://doi.org/10.3390/s20113032

    Article  Google Scholar 

  55. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang L, Wang G, Gai J, Chen T (2018) Recent Advances in Convolutional Neural Networks. Pattern Recognit 77:354–377

    Article  Google Scholar 

  56. Milletari F, Navab N, Ahmadi SA (2016) V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proc. - 2016 4th Int. Conf. 3D Vision, 3DV 2016. 565–571. https://doi.org/10.1109/3DV.2016.79

  57. Milletari F, Ahmadi SA, Kroll C, Plate A, Rozanski V, Maiostre J, Levin J, Dietrich O, Ertl-Wagner B, Bötzel K, Navab N (2016) Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92–102. https://doi.org/10.1016/j.cviu.2017.04.002

    Article  Google Scholar 

  58. Wu J (2017)  Introduction to Convolutional Neural Networks. https://web.archive.org/web/20180928011532/https://cs.nju.edu.cn/wujx/teaching/15_CNN.pdf. Accessed 23 July 2022

  59. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet Classification with Deep Convolutional Neural networks. Commun ACM 60:84–90. https://doi.org/10.1201/9781420010749

    Article  Google Scholar 

  60. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. 3rd Int Conf Learn Represent ICLR 2015 - Conf Track Proc. 1–14

  61. Zeiler MD, Taylor GW, Fergus R (2011) Adaptive deconvolutional networks for mid and high level feature learning. Proc IEEE Int Conf Comput Vis. 2018–2025. https://doi.org/10.1109/ICCV.2011.6126474

  62. Yaseen AF (2018) A Survey on the Layers of Convolutional Neural Networks. Int J Comput Sci Mob Comput 7:191–196

    Google Scholar 

  63. Ashqar BAM, Abu-Naser SS (2019) Identifying Images of Invasive Hydrangea Using Pre-Trained Deep Convolutional Neural Networks. Int J Acad Eng Res 3:28–36

    Google Scholar 

  64. Han S, Carass A, He Y, Prince JL (2020) Automatic Cerebellum Anatomical Parcellation using U-Net with Locally Constrained Optimization. IEEE Trans. Med. Imaging. 116819. https://doi.org/10.1016/j.neuroimage.2020.116819

  65. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  66. Hariharan B, Arbeláez P, Girshick R, Malik J (2014) Simultaneous detection and segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 297–312

  67. Pathak D, Shelhamer E, Long J, Darrell T (2014) Fully Convolutional Multi-Class Multiple Instance Learning. arXiv Prepr. arXiv1412.7144

  68. Han S, He Y, Carass A, Ying SH, Prince JL (2019) Cerebellum Parcellation with Convolutional Neural Networks. Proc SPIE Int Soc Opt Eng. 10949, https://doi.org/10.1117/12.2512119.Cerebellum

  69. Cahall DE, Rasool G, Bouaynaya NC, Fathallah-Shaykh HM (2019) Inception Modules Enhance Brain Tumor Segmentation. Front Comput Neurosci 13:1–8. https://doi.org/10.3389/fncom.2019.00044

    Article  Google Scholar 

  70. Marcinkiewicz M, Nalepa J, Lorenzo PR, Dudzik W, Mrukwa G (2019) Segmenting Brain Tumors from MRI Using Cascaded Multi-modal U-Nets. Springer Nat Switz 2:13–24. https://doi.org/10.1007/978-3-030-11726-9

    Article  Google Scholar 

  71. Qamar S, Ahmad P, Shen L (2020) HI-Net: Hyperdense Inception 3 D UNet for Brain Tumor Segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention. pp. 1–9

  72. Huang G, Van Der Maaten L, Weinberger KQ (2017) Densely Connected Convolutional Networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4700–4708

  73. Kim J, Patriat R, Kaplan J, Solomon O, Harel N (2020) Deep Cerebellar Nuclei Segmentation via Semi-Supervised Deep Context-Aware Learning from 7T Diffusion MRI. IEEE Access 8:101550–101568. https://doi.org/10.1109/ACCESS.2020.2998537

    Article  Google Scholar 

  74. Gottapu RD, Dagli CH (2018) DenseNet for Anatomical Brain Segmentation. Procedia Comput Sci 140:179–185. https://doi.org/10.1016/j.procs.2018.10.327

    Article  Google Scholar 

  75. He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1–9

  76. Mehta R, Sivaswamy J (2017) M-NET : A Convolutional Neural Network for Deep Brain Structure Segmentation. In: 2017 IEEE International Symposium on Biomedical Imaging. pp. 437–440

  77. Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D (2018) DRINet for Medical Image Segmentation. IEEE Trans Med Imaging 37:1–11

    Article  Google Scholar 

  78. Landmann BA, Hyang AJ, Gifford A, Vikram DS, Lim IAL, Farrell JAD, Bogovic JA, Hua J, Chen M, Jarso S, Smith SA, Joel S, Mori S, Pekar JJ, Barker PB, Prince JL, van Zijl PCM (2012) Multi-parametric neuroimaging reproducibility: A 3T resource study. Neuroimage 54(4):2854–2866

  79. Internet Brain Segmentation Repository (IBSR). https://www.nitrc.org/projects/ibsr. Accessed 29 Oct 2022

  80. Asman A, Akhondi-Asl A, Wang H, Tustison N, Avants B, Warfield S, Landman B (2013) Miccai 2013 segmentation algorithms, theory and applications (SATA) challenge results summary. In: MICCAI Challenge Workshop on Segmentation: Algorithms, Theory and Applications (SATA)

  81. Mehta R, Majumdar A, Sivaswamy J (2017) BrainSegNet: a convolutional neural network architecture for automated segmentation of human brain structures BrainSegNet : a convolutional neural network architecture for automated segmentation of. J Med Imaging. 4. https://doi.org/10.1117/1.JMI.4.2.024003

  82. Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Narr KL, Poldrack RA, Bilder RM, Arthur W (2008) Construction of a 3D Probabilistic Atlas of Human Cortical Structures. Neuroimage 39:1064–1080. https://doi.org/10.1016/j.neuroimage.2007.09.031.Construction

    Article  Google Scholar 

  83. Brain Development Webpage. https://brain-development.org/brain-atlases/. Accessed 26 Oct 2022

  84. Moeskops P, Veta M, Lafarge MW, Eppenhof KAJ, Pluim JPW (2017) Adversarial training and dilated convolutions for brain MRI segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. pp. 56–64. Springer

  85. Nguyen DMH, Vu HT, Ung HQ, Nguyen BT (2017) 3D-brain segmentation using deep neural network and Gaussian mixture model. In: 2017 IEEE Winter Conference on Applications of Computer Vision. pp. 815–824

  86. Chen H, Dou Q, Yu L, Qin J, Heng P (2018) VoxResNet : Deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage 170:446–455. https://doi.org/10.1016/j.neuroimage.2017.04.041

    Article  Google Scholar 

  87. Mendrik AM, Vincken KL, Kuijf HJ, Breeuwer M, Bouvy WH, De Bresser J, Alansary A, De Bruijne M, Carass A, El-baz A, Jog A, Katyal R, Khan AR, Van Der Lijn F, Mahmood Q, Mukherjee R, Van Opbroek A, Paneri S, Pereira S, Persson M, Rajchl M, Sarikaya D, Smedby Ö, Silva CA, Vrooman HA, Vyas S, Wang C, Zhao L, Biessels GJ, Viergever MA (2015) MRBrainS Challenge : Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans. Comput. Intell. Neurosci. 2015

  88. Manoharan H, Pang G, Wu H (2019) Visualization of MRI Datasets for Anatomical Brain Segmentation by Pixel-level Analysis. In: 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). pp. 562–568. IEEE

  89. Lei Z, Qi L, Wei Y, Zhou Y, Qi W (2019) Infant Brain MRI Segmentation with Dilated Convolution Pyramid Down-sampling and Self-attention. arXiv Prepr. arXiv1912.12570. 1–9

  90. Wang L, Nie D, Li G, Dolz J, Technologie ED, Zhang Q, Wang F, Xia J, Wu Z, Chen J (2020) Benchmark on Automatic 6-month-old Infant Brain Segmentation Algorithms: The iSeg-2017 Challenge. IEEE Trans Med Imaging 38:2219–2230

    Article  Google Scholar 

  91. Sun Y, Gao K, Wu Z, Lei Z, Wei Y, Ma J, Yang X, Feng X, Zhao L, Le T, Shin J, Zhong T, Zhang Y, Yu L, Li C, Basnet R, Ahmad MO, Swamy MNS, Ma W, Dou Q, Bui TD, Noguera CB, Landman B, Member S, Ian H, Humphreys KL, Shultz S, Li L, Niu S, Lin W, Jewells V, Li G, Shen D, Wang L (2019) Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge. IEEE Trans Med Imaging 40:1363–1376

    Article  Google Scholar 

  92. Thyreau B, Taki Y (2020) Learning a cortical parcellation of the brain robust to the MRI segmentation with convolutional neural networks. Med Image Anal. 61. https://doi.org/10.1016/j.media.2020.101639

  93. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2016) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78. https://doi.org/10.1016/j.media.2016.10.004

    Article  Google Scholar 

  94. Open Data Commons for Traumatic Brain Injury. https://odc-tbi.org/. Accessed 26 Oct 2022

  95. Havaei M, Davy A, Warde-farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P, Larochelle H (2017) Brain Tumor Segmentation with Deep Neural Networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  96. Bala SA, Kant S (2020) Dense Dilated Inception Network for Medical Image Segmentation. Int J Adv Comput Sci Appl 11:785–793

    Google Scholar 

  97. Farooq A, Anwar SM, Awais M, Rehman S (2017) A Deep CNN based Multi-class Classification on Alzheimer’s Disease using MRI. In: 2017 IEEE International Conference on Imaging systems and techniques (IST). pp. 1–6

  98. Jr CRJ, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, Whitwell JL, Ward C, Dale AM, Felmlee JP, Gunter JL, Hill DLG, Killiany R, Schuff N, Fox-bosetti S, Lin C, Studholme C, Decarli CS, Krueger G, Ward HA, Metzger GJ, Scott KT, Mallozzi R, Blezek D, Levy J, Debbins JP, Fleisher AS, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner MW (2008) The Alzheimer ’ s Disease Neuroimaging Initiative ( ADNI ): MRI Methods. 691, 685–691. https://doi.org/10.1002/jmri.21049

  99. Talo M, Baloglu UB, Yildrim Ö, Acharya UR (2019) Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn Syst Res 54:176–188

    Article  Google Scholar 

  100. Harvard Medical School Data. http://www.med.harvard.edu/AANLIB/. Accessed: 26 Oct 2022

  101. Yİğİt A, Işik Z (2020) Applying deep learning models to structural MRI for stage prediction of Alzheimer ’ s disease. Turkish J Electr Eng Comput Sci. 28:196–210. https://doi.org/10.3906/elk-1904-172

    Article  Google Scholar 

  102. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2021) Open Access Series of Imaging Studies ( OASIS ): Cross-sectional MRI Data in Young , Middle Aged , Nondemented , and Demented Older Adults. 1498–1507

  103. Malone IB, Cash D, Ridgway GR, MacManus DG, Ourselin S, Fox NC, Schott JM (2013) MIRIAD-Public release of a multiple time point Alzheimer’s MR imaging dataset. Neuroimage 70:33–36. https://doi.org/10.1016/j.neuroimage.2012.12.044

    Article  Google Scholar 

  104. Dolz J, Desrosiers C, Ben Ayed I (2018) 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study. Neuroimage 170:456–470. https://doi.org/10.1016/j.neuroimage.2017.04.039

    Article  Google Scholar 

  105. Kansal K, Yang Z, Fishman AM, Sair HI, Ying SH, Jedynak BM, Prince JL, Onyike CU (2017) Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain 140:707–720. https://doi.org/10.1093/aww348

    Article  Google Scholar 

  106. Martino AD, Connor DO, Chen B, Alaerts K, Anderson JS, Assaf M, Balsters JH, Baxter L, Beggiato A, Bernaerts S, Blanken LME, Bookheimer SY, Braden BB, Byrge L, Castellanos FX, Dapretto M, Delorme R, Fair DA, Fishman I, Fitzgerald J, Gallagher L, Keehn RJJ, Kennedy DP, Lainhart JE, Luna B, Mostofsky SH, Müller R-A, Nebel MB, Nigg JT, O’Hearn K, Solomon M, Toro R, Vaidya CJ, Wenderoth N, White T, Craddock RC, Lord C, Leventhal B, Milham MP (2017) Data Descriptor: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci Data 4:1–15

    Article  Google Scholar 

  107. Simon J, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The One Hundred Layers Tiramisu : Fully Convolutional DenseNets for Semantic Segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 11–19

  108. Yu F, Koltun V (2016) Multi-Scale Context Aggregation by Dilated Convolutions. In: Proceedings of the International Conference on Learning Representations. pp. 1–13

  109. Pleiss G, Chen D, Huang G, Li T, van der Maaten L, Weinberger KQ (2017) Memory-Efficient Implementation of DenseNets. arXiv Prepr. arXiv1707.06990

  110. Bjorck J, Gomes C, Selman B, Weinberger KQ (2018) Understanding batch normalization. Adv. Neural Inf. Process. Syst. 2018-Decem, 7694–7705

  111. Ulyanov D, Vedaldi A, Lempitsky V (2017) Improved Texture Networks : Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6924–6932

  112. Mukhopadhyay P, Chaudhuri BB (2015) A survey of Hough Transform. Pattern Recognit 48:993–1010. https://doi.org/10.1016/j.patcog.2014.08.027

    Article  Google Scholar 

  113. Banfield JD, Raftery AE (1993) Model-based Gaussian and non-Gaussian Clustering 0. Biometrics 49(3):803–821

  114. Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y (2013) Maxout Networks. In: International Conference on Machine Learning. pp. 1319–1327

  115. Menze BH, Jakab A, Bauer S, Kalpathy-cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber M, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Ç, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin H, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Leemput KV (2015) The Multimodal Brain Tumor Image Segmentation Benchmark ( BRATS ). IEEE Trans Med Imaging 34:1993–2024. https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  116. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M, Prastawa M, Alberts E, Lipkova J, Freymann J, Kirby J, Bilello M, Fathallah-Shaykh H, Wiest R, Kirschke J, Wiestler B, Colen R, Kotrotsou A, Lamontagne P, Marcus D, Milchenko M, Nazeri A, Weber M-A, Mahajan A, Baid U, Gerstner E, Kwon D, Acharya G, Agarwal M, Alam M, Albiol A, Albiol A, Albiol FJ, Alex V, Allinson N, Amorim PHA, Amrutkar A, Anand G, Andermatt S, Arbel T, Arbelaez P, Avery A, Azmat MBP, Bai W, Banerjee S, Barth B, Batchelder T, Batmanghelich K, Battistella E, Beers A, Belyaev M, Bendszus M, Benson E, Bernal J, Bharath HN, Biros G, Bisdas S, Brown J, Cabezas M, Cao S, Cardoso JM, Carver EN, Casamitjana A, Castillo LS, Catà M, Cattin P, Cerigues A, Chagas VS, Chandra S, Chang Y-J, Chang S, Chang K, Chazalon J, Chen S, Chen W, Chen JW, Chen Z, Cheng K, Choudhury AR, Chylla R, Clérigues A, Colleman S, Colmeiro RGR, Combalia M, Costa A, Cui X, Dai Z, Dai L, Daza LA, Deutsch E, Ding C, Dong C, Dong S, Dudzik W, Eaton-Rosen Z, Egan G, Escudero G, Estienne T, Everson R, Fabrizio J, Fan Y, Fang L, Feng X, Ferrante E, Fidon L, Fischer M, French AP, Fridman N, Fu H, Fuentes D, Gao Y, Gates E, Gering D, Gholami A, Gierke W, Glocker B, Gong M, González-Villá S, Grosges T, Guan Y, Guo S, Gupta S, Han W-S, Han IS, Harmuth K, He H, Hernández-Sabaté A, Herrmann E, Himthani N, Hsu W, Hsu C, Hu X, Hu X, Hu Y, Hu Y, Hua R, Huang T-Y, Huang W, Van Huffel S, Huo QHVV, Iftekharuddin KM, Isensee F, Islam M, Jackson AS, Jambawalikar SR, Jesson A, Jian W, Jin P, Jose VJM, Jungo A, Kainz B, Kamnitsas K, Kao P-Y, Karnawat A, Kellermeier T, Kermi A, Keutzer K, Khadir MT, Khened M, Kickingereder P, Kim G, King N, Knapp H, Knecht U, Kohli L, Kong D, Kong X, Koppers S, Kori A, Krishnamurthi G, Krivov E, Kumar P, Kushibar K, Lachinov D, Lambrou T, Lee J, Lee C, Lee Y, Lee M, Lefkovits S, Lefkovits L, Levitt J, Li T, Li H, Li W, Li H, Li X, Li Y, Li H, Li Z, Li X, Li Z, Li X, Li W, Lin Z-S, Lin F, Lio P, Liu C, Liu B, Liu X, Liu M, Liu J, Liu L, Llado X, Lopez MM, Lorenzo PR, Lu Z, Luo L, Luo Z, Ma J, Ma K, Mackie T, Madabushi A, Mahmoudi I, Maier-Hein KH, Maji P, Mammen C, Mang A, Manjunath BS, Marcinkiewicz M, McDonagh S, McKenna S, McKinley R, Mehl M, Mehta S, Mehta R, Meier R, Meinel C, Merhof D, Meyer C, Miller R, Mitra S, Moiyadi A, Molina-Garcia D, Monteiro MAB, Mrukwa G, Myronenko A, Nalepa J, Ngo T, Nie D, Ning H, Niu C, Nuechterlein NK, Oermann E, Oliveira A, Oliveira DDC, Oliver A, Osman AFI, Ou Y-N, Ourselin S, Paragios N, Park MS, Paschke B, Pauloski JG, Pawar K, Pawlowski N, Pei L, Peng S, Pereira SM, Perez-Beteta J, Perez-Garcia VM, Pezold S, Pham B, Phophalia A, Piella G, Pillai GN, Piraud M, Pisov M, Popli A, Pound MP, Pourreza R, Prasanna P, Prkovska V, Pridmore TP, Puch S, Puybareau É, Qian B, Qiao X, Rajchl M, Rane S, Rebsamen M, Ren H, Ren X, Revanuru K, Rezaei M, Rippel O, Rivera LC, Robert C, Rosen B, Rueckert D, Safwan M, Salem M, Salvi J, Sanchez I, Sánchez I, Santos HM, Sartor E, Schellingerhout D, Scheufele K, Scott MR, Scussel AA, Sedlar S, Serrano-Rubio JP, Shah NJ, Shah N, Shaikh M, Shankar BU, Shboul Z, Shen H, Shen D, Shen L, Shen H, Shenoy V, Shi F, Shin HE, Shu H, Sima D, Sinclair M, Smedby O, Snyder JM, Soltaninejad M, Song G, Soni M, Stawiaski J, Subramanian S, Sun L, Sun R, Sun J, Sun K, Sun Y, Sun G, Sun S, Suter YR, Szilagyi L, Talbar S, Tao D, Tao D, Teng Z, Thakur S, Thakur MH, Tharakan S, Tiwari P, Tochon G, Tran T, Tsai YM, Tseng K-L, Tuan TA, Turlapov V, Tustison N, Vakalopoulou M, Valverde S, Vanguri R, Vasiliev E, Ventura J, Vera L, Vercauteren T, Verrastro CA, Vidyaratne L, Vilaplana V, Vivekanandan A, Wang G, Wang Q, Wang CJ, Wang W, Wang D, Wang R, Wang Y, Wang C, Wang G, Wen N, Wen X, Weninger L, Wick W, Wu S, Wu Q, Wu Y, Xia Y, Xu Y, Xu X, Xu P, Yang T-L, Yang X, Yang H-Y, Yang J, Yang H, Yang G, Yao H, Ye X, Yin C, Young-Moxon B, Yu J, Yue X, Zhang S, Zhang A, Zhang K, Zhang X, Zhang L, Zhang X, Zhang Y, Zhang L, Zhang J, Zhang X, Zhang T, Zhao S, Zhao Y, Zhao X, Zhao L, Zheng Y, Zhong L, Zhou C, Zhou X, Zhou F, Zhu H, Zhu J, Zhuge Y, Zong W., Kalpathy-Cramer J, Farahani K, Davatzikos C, van Leemput K, Menze B (2018) Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv Prepr. arXiv1811.02629

  117. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going Deeper with Convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1–9

  118. Juntu J, Sijbers J, Van Dyck D, Gielen J (2005) Bias Field Correction for MRI Images. In: Computer Recognition Systems. pp. 543–551. Springer Berlin Heidelberg, Berlin

  119. Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC (2011) A Level Set Method for Image Segmentation in the Presence of Intensity Inhomogeneities With Application to MRI. 20, 2007–2016

  120. Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S, Vercauteren T (2018) Interactive Medical Image Segmentation Using Deep Learning with Image-Specific Fine Tuning. IEEE Trans Med Imaging 37:1562–1573. https://doi.org/10.1109/TMI.2018.2791721

    Article  Google Scholar 

  121. Romero M, Interian Y, Solberg T, Valdes G (2019) Training Deep Learning models with small datasets. Prepr. ArXiv. Dec

  122. Lakhani P, Sundaram B (2017) Deep Learning at Chest Radiography Lakhani and Sundaram. Radiology 284:574–582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Cabeza-Ruiz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabeza-Ruiz, R., Velázquez-Pérez, L., Pérez-Rodríguez, R. et al. ConvNets for automatic detection of polyglutamine SCAs from brain MRIs: state of the art applications. Med Biol Eng Comput 61, 1–24 (2023). https://doi.org/10.1007/s11517-022-02714-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02714-w

Keywords

Navigation