Skip to main content
Log in

Shape Discrimination of Healthy and Diseased Cardiac Ventricles using Medial Representation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Our work aims at investigating the suitability of the medial representation method to model and analyze shape and shape differences between healthy and diseased hearts. For this experimental study, we use MRI short axis scans of 11 healthy volunteers (age: 50±10) and 5 patients (age: 57±11) with dilativ cardiomyopathy. Controlled semi- automated segmentation provides labels, which are used for the modeling process. To evaluate the model to image accuracy the similarity index (SI), the mean Euclidean distance (ED), and the Hausdorff distance (HD) are calculated. A very high SI (SI > 0.9) for the ventricles is achieved. The mean ED is less than two times the voxel size (1.56 mm) and the HD values for both chambers are in the range of 4.8±3 mm. Applying extended principal component analysis (PCA) on all 16 subjects reveals the distribution of the individual shapes, where the first two PC cover more than 40%, and the first ten PC cover 95% of the shape space. The components show meaningful modes of variation, whereas the healthy and diseased hearts are clustered in the first two components. This preliminary result using the medial based approach promises to discriminate at least globally between healthy and diseased hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardinet E, Cohen LD, Ayache N (1996) Tracking and motion analysis of the left ventricle with deformable superquadrics. Med Image Anal 1:129–149

    Article  PubMed  CAS  Google Scholar 

  2. Cootes TF, Taylor CJ, Hill A, Haslam J (1993) The Use of Active Shape Models for locating Structures. Presented at 13′th international conference on information processing in medical imaging

  3. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models: their training and applications. Comput Vis Image Underst 61:38–59

    Article  Google Scholar 

  4. Davies RH, Twining CJ, Cootes TF, Waterton JC, Taylor CJ (2002) A minimum description length approach to statistical shape modeling. IEEE Trans Med Imaging 21:525–537

    Article  PubMed  Google Scholar 

  5. Wang Y, Staib LH (2000) Physical model-based non-rigid registration incorporating statistical shape information. Med Image Anal 4:7–20

    Article  PubMed  CAS  Google Scholar 

  6. Frangi AF, Niessen WJ, Viergever MA (2001) Three-dimensional modeling for functional analysis of cardiac images: a review. IEEE Trans Med Imaging 20:2–25

    Article  PubMed  CAS  Google Scholar 

  7. Mitchell SC, Lelieveldt BP, van der Geest RJ, Bosch HG, Reiber JH, and M. Sonka (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20:415–423

    Article  PubMed  CAS  Google Scholar 

  8. Frangi AF, Rueckert D, Schnabel JA, Niessen WJ (2002) Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans Med Imaging 21:1151–1166

    Article  PubMed  Google Scholar 

  9. Lotjonen J, Kivisto S, Koikkalainen J, Smutek D, Lauerma K (2004) Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Med Image Anal 8: 371–386

    Article  PubMed  CAS  Google Scholar 

  10. Brett AD, Taylor CJ (2000) A method of automated landmark generation for automated 3D PDM construction. Image Vis Comput 18:739–748

    Article  Google Scholar 

  11. Brett AD, Taylor CJ (2000) Construction of 3D shape models of femoral articular cartilage using harmonic maps. Presented at MICCAI

  12. Zhu SC, Yuille AL (1996) Forms: a flexible object recognition and modeling system. Int J Comput Vis 20:187–212

    Article  Google Scholar 

  13. Blum H (1967) A transformation for extracting new descriptors of shape. In: Wathen-Dunn W (eds) Models for the perception of speech and visual Form. MIT Press, Cambridge, pp 363–380

    Google Scholar 

  14. Pizer SM, Fritsch DS, Yushkevich PA, Johnson VE, Chaney EL (1999) Segmentation, registration, and measurement of shape variation via image object shape. IEEE Trans Med Imaging 18: 851–865

    Article  PubMed  CAS  Google Scholar 

  15. Pizer SM (2003) Guest editoral-medial and medical: a good match for image analysis. Int J Comput Vis 55:79–84

    Article  Google Scholar 

  16. Joshi S, Pizer S, Fletcher PT, Yushkevich P, Thall A, Marron JS (2002) Multiscale deformable model segmentation and statistical shape analysis using medial descriptions. IEEE Trans Med Imaging 21:538–550

    Article  PubMed  Google Scholar 

  17. Fletcher PT, Joshi S, Lu C, Pizer S (2003) Gaussian distributions on Lie groups and their application to statistical shape analysis. Inf Process Med Imaging 18:450–462

    PubMed  Google Scholar 

  18. Pilgram R, Fritscher KD, Fletcher PT, Schubert R (2004) Shape modeling of the multiobject organ heart. Presented at BioMED, Innsbruck

  19. Pilgram R, Fritscher KD, Schubert R (2004) Modeling of the geometric variation and analysis of the right atrium and right ventricle motion of the human heart using PCA. Presented at CARS, Chicago

  20. Styner M (2003) Automatic and robust computation of 3D medial models incorporating object variability. Int J Comput Vis 55: 107–122

    Article  Google Scholar 

  21. Golland P, Grimson W, Shenton M, Kikinis R (2005) Detection and analysis of statistical differences in anatomical shape. Med Image Anal 9:69–86

    Article  PubMed  Google Scholar 

  22. NLM Insight Segmentation and Registration Toolkit

  23. Fritscher KD, Schubert R (2005) A software framework for pre-processing and level-set segmentation of medical data. Presented at SPIE medical imaging, San Diego

  24. Leventon M, Grimson W, Faugeras O (2000) Statistical Shape Influence in Geodesic Active Contours. Comput Vis Pattern Recognit 1:316–323

    Google Scholar 

  25. Pizer SM, Fletcher PT, Joshi S, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash G, Glotzer JM, Jiroutek MR, Lu C, Muller KE, Tracton G, Yushkevich PA, Chaney EL (2003) Deformable m-reps for 3D medical image segmentation. Int J Comput Vis 55(2/3): 85–106

    Article  Google Scholar 

  26. Pilgram R, Fritscher K, Fletcher PT, Schubert R (2004) Shape Modeling of the multiobject organ heart. Presented at BioMED, Innsbruck

  27. Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 13:716–724

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pilgram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilgram, R., Schubert, R., Fritscher, K.D. et al. Shape Discrimination of Healthy and Diseased Cardiac Ventricles using Medial Representation. Int J CARS 1, 33–38 (2006). https://doi.org/10.1007/s11548-006-0002-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-006-0002-3

Keywords

Navigation