Skip to main content
Log in

Automatic optimum phase point selection based on centerline consistency for 3D rotational coronary angiography

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

The quality of three-dimensional (3D) reconstructions of the coronary arteries from rotational coronary angiography depends on the selected phase point. Inconsistencies in the projection data, due to heart motion, degrade the image quality. Here, a method for the automatic selection of the optimum phase points for reconstruction is presented.

Methods

The method aims at determining heart phases with minimum inconsistency of the motion state in the selected projection data. This is achieved by calculating an error measure which describes the inconsistency of the vessel centerline geometry in three dimensions for all cardiac phases. The phases with minimum inconsistency are then selected as optimum reconstruction phases. The method’s feasibility was tested on 22 clinical cases. One late-diastolic and one end-systolic optimum phase were determined automatically for each case. For comparison, three observers visually determined the optimum phases.

Results

Overall, 82% of the 44 automatically determined phases delivered optimum image quality, only 5% showed considerably lower quality than the visually determined optimum phase. For all 22 cases at least one of the two automatically determined phases yielded optimum quality.

Conclusion

In a first test the method proved to robustly determine optimum reconstruction phase points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nieman K, Oudkerk M, Rensing BJ, van Ooijen P, Munne A, van Geuns RJ and de Feyter PJ (2001). Coronary angiography with multi-slice computed tomography. Lancet 357: 599–603

    Article  PubMed  CAS  Google Scholar 

  2. Kopp AF, Schroeder S, Kuettner A, Baumbach A, Georg C, Kuzo R, Heuschmid M, Ohnesorge B, Karsch KR and Claussen CD (2002). Non-invasive coronary angiography with high resolution multidetector-row computed tomography. Eur Heart J 23: 1714–1725

    PubMed  CAS  Google Scholar 

  3. Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, Schlundt C, Bautz W, Daniel WG and Achenbach S (2003). Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107: 664–666

    Article  PubMed  Google Scholar 

  4. Ghersin E, Litmanovich D, Dragu R, Rispler S, Lessick J, Ofer A, Brook OR, Gruberg L, Beyar R and Engel A (2005). 16-MDCT coronary angiography versus invasive coronary angiography in acute chest pain syndrome: a blinded prospective study. Am J Roentgenol 186: 177–184

    Article  Google Scholar 

  5. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM and Manning WJ (2001). Coronary magnetic resonance angiography for the detection of coronary artery stenoses. New Engl J Med 345: 1863–1869

    Article  PubMed  CAS  Google Scholar 

  6. Watanabe Y, Nagayama M, Amoh Y, Fujii M, Fuku Y, Okumura A, van Cauteren M, Stuber M and Dodo Y (2002). High-resolution selective three-dimensional magnetic resonance coronary angiography with navigator-echo technique: segment-by-segment evaluation of coronary artery stenosis. J Magn Reson Imag 16: 238–245

    Article  Google Scholar 

  7. Kefer J, Coche E, Legros G, Pasquet A, Grandin C, van Beers BE, Vanoverschelde JL and Gerber BL (2005). Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 46: 92–100

    Article  PubMed  Google Scholar 

  8. Rasche V, Movassaghi B, Grass M, Schäfer D, Kühl HP, Günther RW and Bücker A (2006). Three-dimensional X-ray coronary angiography in the porcine model: a feasibility study. Acad Radiol 13: 644–651

    Article  PubMed  Google Scholar 

  9. Messenger JC, Chen SYJ, Carroll JD, Burchenal JEB, Kioussopoulos K and Groves BM (2000). 3D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients. Int J Cardiovasc Imaging 16: 413–427

    Article  CAS  Google Scholar 

  10. Movassaghi B, Rasche V, Grass M, Viergever M and Niessen W (2004). A quantitative analysis of 3D coronary modeling from two or more projections. IEEE Trans Med Imag 23: 1517–1531

    Article  CAS  Google Scholar 

  11. Garcia JA, Chen J, Hansgen A, Wink O, Movassaghi B and Messenger JC (2006). Rotational angiography (RA) and three-dimensional imaging (3-DRA): an available clinical tool. Int J Cardiovasc Imaging 23: 9–13

    Article  PubMed  Google Scholar 

  12. Wollschläger H, Lee P, Zeiher A, Solzbach U, Bonzel T and Just H (1986). Derivation of spatial information from biplane multidirectional coronary angiograms. Med Prog Technol 11: 57–63

    PubMed  Google Scholar 

  13. Saito T, Misaki M, Shirato K and Takishima T (1990). Three-dimensional quantitative coronary angiography. IEEE Trans Biomed Eng 37: 768–777

    Article  PubMed  CAS  Google Scholar 

  14. Wahle A, Wellnhofer E, Mugaragu I, Saner HU, Oswald H and Fleck E (1995). Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms. IEEE Trans Med Imag 14: 230–241

    Article  CAS  Google Scholar 

  15. Shechter G, Devernay F, Coste-Maniere E, Quyyumi A and McVeigh ER (2003). Three-dimensional motion tracking of coronary arteries in biplane cineangiograms. IEEE Trans Med Imag 22: 493–503

    Article  Google Scholar 

  16. Blondel C, Malandain G, Vaillant R and Ayache N (2006). Reconstruction of coronary arteries from a single rotational X-ray projection sequence. IEEE Trans Med Imag 25: 653–663

    Article  Google Scholar 

  17. Jandt U, Schäfer D, Rasche V, Grass M (2007) Automatic generation of 3D coronary artery centerlines using rotational X-ray angiography. In: Hsieh J, Flynn MJ (eds) Medical imaging: physics of medical imaging, Proceedings of SPIE 6510:65104Y. SPIE, Bellingham

  18. Rasche V, Buecker A, Grass M, Koppe R, Op de Beek J, Bertrams R, Suurmond R, Kuehl H and Guenther RW (2002). ECG-gated 3D-rotational coronary angiography (3DRCA).Proc CARS 2002: 827–831

    Google Scholar 

  19. Schäfer D, Borgert J, Rasche V and Grass M (2006). Motion-compensated and gated cone beam filtered back-projection for 3-D rotational X-ray angiography. IEEE Trans Med Imag 25: 898–906

    Article  Google Scholar 

  20. Movassaghi B, Grass M, Schäfer D, Rasche V, Wink O, Schoonenberg G, Chen JY, Garcia JA, Groves BM, Messenger JC, Carroll JD (2007) 4D coronary artery reconstruction based on retrospectively gated rotational angiography: first in-human results. In: Cleary KR, Miga MI (eds) Medical imaging: visualization and image-guided procedures, Proceedings of SPIE 6509:65090P-1. SPIE, Bellingham

  21. Bonnet S, Koenig A, Roux S, Hugonnard P, Guillemaud R and Grangeat P (2003). Dynamic X-ray computed tomography. Proc IEEE 91: 1574–1586

    Article  Google Scholar 

  22. Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG and Moshage W (2000). In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216: 457–463

    PubMed  CAS  Google Scholar 

  23. Rasche V, Movassaghi B, Grass M, Schäfer D and Bücker A (2006). Automatic selection of the optimal cardiac phase for gated three-dimensional coronary X-ray angiography. Acad Radiol 13: 630–640

    Article  PubMed  Google Scholar 

  24. Jandt U, Schäfer D, Grass M (2007) Automatic cardiac phase point selection for 3D rotational coronary angiography. Computer Assisted Radiology and Surgery, 21st international congress and exhibition. Proc CARS 2 Suppl 1:S77–S79

  25. Manzke R, Köhler T, Nielsen T, Hawkes D and Grass M (2004). Automatic phase determination for retrospectively gated cardiac CT. Med Phys 31: 3345–3362

    Article  PubMed  CAS  Google Scholar 

  26. Lorenz C, Carlsen IC, Buzug TM, Fassnacht C, Weese J (1997) Multi-scale line segmentation with automatic estimation of width, contrast, and tangential direction in 2D and 3D medical images. In: Troccaz J, Grimson E, Mösges R (eds) CVRMed-MRCAS’97. Lecture Notes in Computer Science, vol 1205. Springer, Heidelberg, pp 233–242

  27. Canny J (1986). A computational approach to edge detection. IEEE Trans Pattern Anal 8: 679–698

    Article  Google Scholar 

  28. Borgefors G (1998). Hierarchical chamfer matching: a parametric edge matching algorithm. IEEE Trans Pattern Anal 10: 849–865

    Article  Google Scholar 

  29. Hansis E, Schäfer D, Grass M, Dössel O (2007) An iterative method for the reconstruction of the coronary arteries from rotational X-ray angiography. In: Hsieh J, Flynn MJ (eds) Medical imaging: physics of medical imaging, Proceedings of SPIE 6510:651026. SPIE, Bellingham

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Hansis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansis, E., Schäfer, D., Dössel, O. et al. Automatic optimum phase point selection based on centerline consistency for 3D rotational coronary angiography. Int J CARS 3, 355–361 (2008). https://doi.org/10.1007/s11548-008-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0233-6

Keywords

Navigation