Skip to main content

Advertisement

Log in

Impact of segmentation uncertainties on computer-aided diagnosis of pulmonary nodules

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

Computer-aided diagnosis (CADx) systems can be utilized to estimate the likelihood of malignancy of pulmonary nodules detected on CT scans. Such systems often require an initial segmentation step. We report on the impact of segmentation variations on the CADx output and describe methods for reducing this effect.

Methods

A total of 125 pulmonary nodules were evaluated using a CADx system based on genetic algorithms and ensemble classifiers. Two segmentation approaches were tested using leave-one-out validation: one approach included a free parameter chosen manually (manual) while the second used a parameter-free variant of the same algorithm (automatic).

Results

By varying the free parameter for the manual segmentation of the testing data, a set of likelihoods of malignancy was computed for each nodule. The mean range of these likelihoods was 0.36 (±0.23) and 0.45 (±0.27) using the manual and automatic segmentation approaches for the training data, respectively. Using training and testing data segmented with the automatic approach yielded an Az of 0.87 (±0.03). Similar results were obtained when the training and testing data were segmented using either approach.

Conclusion

Nodule segmentation can significantly affect CADx performance. A parameter-free segmentation was shown to match the performance of a skilled user while reducing potential user-to-user variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu JQ, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1): 43–66

    PubMed  Google Scholar 

  2. Gurney JW (1993) Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis. Part I. Theory. Radiology 186(2): 405–413

    PubMed  CAS  Google Scholar 

  3. Nakamura K, Yoshida H, Engelmann R, MacMahon H, Katsuragawa S, Ishida T et al (2000) Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology 214(3): 823–830

    PubMed  CAS  Google Scholar 

  4. Way TW, Hadjiiski LM, Sahiner B, Chan HP, Cascade PN, Kazerooni EA et al (2006) Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours. Med Phys 33(7): 2323–2337. doi:10.1118/1.2207129

    Article  PubMed  Google Scholar 

  5. Suzuki K, Li F, Sone S, Doi K (2005) Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24(9): 1138–1150. doi:10.1109/TMI.2005.852048

    Article  PubMed  Google Scholar 

  6. Boroczky L, Lee MC, Zhao L, Agnihotri L, Powell CA, Borczuk AC et al (2007) Computer-aided diagnosis for lung cancer using a classifier ensemble. Int J CARS 2(Supp 1): S362–S364

    Google Scholar 

  7. Wiemker R, Rogalla P, Blaffert T, Sifri D, Hay O, Shah E et al (2005) Aspects of computer-aided detection (CAD) and volumetry of pulmonary nodules using multislice CT. Br J Radiol 78(Special Issue): S46–S56. doi:10.1259/bjr/30281702

    Article  PubMed  Google Scholar 

  8. Wiemker R, Rogalla P, Hein P, Blaffert T, Rosch P (2003) Computer-aided segmentation of pulmonary nodules: automated vasculature cutoff in thin- and thick-slice CT. 17th International congress on computer assisted radiology and surgery (CARS), London, pp 965–970

  9. Kuhnigk JM, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S et al (2006) Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging 25(4): 417–434. doi:10.1109/TMI.2006.871547

    Article  PubMed  Google Scholar 

  10. Opfer R, Wiemker R (2007) A new general tumor segmentation framework based on radial basis function energy minimization with a validation study on LIDC lung nodules. In: Pluim JPW, Reinhardt JM (eds) SPIE medical imaging 2007: image processing, vol 6512. SPIE, San Diego

    Google Scholar 

  11. Erasmus JJ, Connolly JE, McAdams HP, Roggli VL (2000) Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions. Radiographics 20(1): 43–58

    PubMed  CAS  Google Scholar 

  12. Li F, Sone S, Abe H, Macmahon H, Doi K (2004) Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology 233(3): 793–798. doi:10.1148/radiol.2333031018

    Article  PubMed  Google Scholar 

  13. Sadjadi FA, Hall EL (1980) 3-Dimensional moment invariants. IEEE Trans Pattern Anal Mach Intell 2(2): 127–136

    Article  Google Scholar 

  14. Granlund GH (1972) Fourier preprocessing for hand print character recognition. IEEE Trans Comput C 21(2): 195–201

    Google Scholar 

  15. McNitt-Gray MF, Har EM, Wyckoff N, Sayre JW, Goldin JG, Aberle DR (1999) A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: preliminary results. Med Phys 26(6): 880–888. doi:10.1118/1.598603

    Article  PubMed  CAS  Google Scholar 

  16. Sahiner B, Chan HP, Petrick N, Helvie MA, Goodsitt MM (1998) Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis. Med Phys 25(4): 516–526. doi:10.1118/1.598228

    Article  PubMed  CAS  Google Scholar 

  17. Baraldi A, Parmiggiani F (1995) An investigation of the textural characteristics associated with gray-level cooccurrence matrix statistical parameters. IEEE Trans Geosci Rem Sens 33(2): 293–304. doi:10.1109/36.377929

    Article  Google Scholar 

  18. Haralick RM, Shanmuga K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC- 3(6): 610–621. doi:10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  19. Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19(5): 1264–1274. doi:10.1109/21.44046

    Article  Google Scholar 

  20. Chen CC, Daponte JS, Fox MD (1989) Fractal feature analysis and classification in medical imaging. IEEE Trans Med Imaging 8(2): 133–142. doi:10.1109/42.24861

    Article  PubMed  CAS  Google Scholar 

  21. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, New York

    Google Scholar 

  22. Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley, Hoboken

    Google Scholar 

  23. Eshelman L (1991) The CHC adaptive search algorithm: how to have a safe search when engaging in nontraditional genetic recombination. In: Rawlins GJE (eds) Foundations of genetic algorithms I. Morgan Kaufmann, San Francisco

    Google Scholar 

  24. Guerra-Salcedo C, Whitley DL (1998) Genetic search for feature subset selection: a comparison between CHC and GENESIS. Third Annual Conference for Genetic Programming, Madison

  25. Guerra-Salcedo C, Whitley D (1999) Feature selection mechanisms for ensemble creation: a genetic search perspective. In: Freitas AA (ed) AAAI-99 and GECCO-99 workshop on data mining with evolutionary algorithms: research directions. AAAI Press, pp 13–17

  26. Zhao BS, Yankelevitz D, Reeves A, Henschke C (1999) Two-dimensional multi-criterion segmentation of pulmonary nodules on helical CT images. Med Phys 26(6): 889–895. doi:10.1118/1.598605

    Article  PubMed  CAS  Google Scholar 

  27. Wiemker R, Zwartkruis A et al (2001) Optimal thresholding for 3D segmentation of pulmonary nodules in high resolution CT. In: Lemke HU (eds) 15th International Congress on Computer Assisted Radiology and Surgery (CARS), vol 1230. Elsevier, Berlin, pp 653–658

    Google Scholar 

  28. Li Q, Doi K (2006) Reduction of bias and variance for evaluation of computer-aided diagnostic schemes. Med Phys 33(4): 868–875. doi:10.1118/1.2179750

    Article  PubMed  Google Scholar 

  29. Metz CE, Herman BA, Shen JH (1998) Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Stat Med 17(9): 1033–1053 doi:10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  30. Zhao L, Lee MC, Boroczky L, Vloemans V, Opfer R (2008) Comparison of computer-aided diagnosis performance and radiologist readings on LIDC pulmonary nodule dataset. In: Sonka M, Manduca A (eds) SPIE medical imaging 2008: computer-aided diagnosis. SPIE, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M.C., Wiemker, R., Boroczky, L. et al. Impact of segmentation uncertainties on computer-aided diagnosis of pulmonary nodules. Int J CARS 3, 551–558 (2008). https://doi.org/10.1007/s11548-008-0257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0257-y

Keywords

Navigation