Skip to main content
Log in

RepliExplore: coupling physical and virtual anatomy models

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

We present a system which co-registers physical anatomy models with virtual three-dimensional (3D) representations. Interactions performed on the physical model by means of a 3D pointing device are directly reflected on its virtual counterpart. Complex anatomical information integrated into the virtual model thus becomes accessible through the physical interface in a simple and intuitive manner.

Methods

Using an optical tracking system, we implemented and tested a reference application that includes several tools for the exploration and quantification of anatomical models. We theoretically evaluated the accuracy of the landmark-based registration for different landmark configurations.

Results

Physicians and computer scientists found the system simple to learn and intuitive to use. By optimizing landmark configurations, the accuracy could be significantly increased, particularly for scenarios in which only selected regions required higher accuracy.

Conclusions

Physical anatomical models can benefit from the combination with a virtual counterpart in several ways. Applications include anatomical education and the study of patient-individual organ models. Optimizing the registration landmark configuration for specific applications can lower the accuracy requirements for the tracking system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McLachlan JC, Bligh J, Bradley P et al (2004) Teaching anatomy without cadavers. Med Educ 38(4): 418–424. doi:10.1046/j.1365-2923.2004.01795.x

    Article  PubMed  Google Scholar 

  2. Temkin B, Acosta E, Malvankar A et al (2006) An interactive three-dimensional virtual body structures system for anatomical training over the internet. Clin Anat 19(3): 267–274. doi:10.1002/ca.20230

    Article  PubMed  Google Scholar 

  3. Brenton H, Hernandeza J, Belloa F et al (2007) Using multimedia and Web3D to enhance anatomy teaching. Comput Educ 49(1): 32–53. doi:10.1016/j.compedu.2005.06.005

    Article  Google Scholar 

  4. Kneebone R (2003) Simulation in surgical training: educational issues and practical implications. Med Educ 37(3): 267–277. doi:10.1046/j.1365-2923.2003.01440.x

    Article  PubMed  Google Scholar 

  5. Gallagher AG, Ritter EM, Champion H et al (2005) Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 241(2): 364–372. doi:10.1097/01.sla.0000151982.85062.80

    Article  PubMed  Google Scholar 

  6. Sørensen TS, Pedersen EM, Hansen OK et al (2003) Visualization of morphological details in congenitally malformed hearts: virtual three-dimensional reconstruction from magnetic resonance imaging. Cardiol Young 13(5): 451–460

    PubMed  Google Scholar 

  7. Pommert A, Höhne K, Burmester E et al (2006) Computer-based anatomy: a prerequisite for computer-assisted radiology and surgery. Acad Radiol 13(1): 104–112. doi:10.1016/j.acra.2005.08.034

    Article  PubMed  Google Scholar 

  8. Greil GF, Wolf I, Kuettner A et al (2007) Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol 96(3): 176–185. doi:10.1007/s00392-007-0482-3

    Article  PubMed  CAS  Google Scholar 

  9. Jacobs S, Grunert R, Mohr FW et al (2008) 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg 7: 6–9. doi:10.1510/icvts.2007.156588

    Article  PubMed  Google Scholar 

  10. Ishii H (2008) Tangible bits: beyond pixels. In: TEI ’08 Proceedings of the 2nd international conference on tangible and embedded interaction, ACM, xv–xxv

  11. Park H, Moon HC, Lee JY (2009) Tangible augmented prototyping of digital handheld products. Comput Ind 60(2): 114–125. doi:10.1016/j.compind.2008.09.001

    Article  Google Scholar 

  12. Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. JOSA 4: 629–642. doi:10.1364/JOSAA.4.000629

    Google Scholar 

  13. Maurer CR, Fitzpatrick JM, Wang M et al (1997) Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16(4): 447–462. doi:10.1109/42.611354

    Article  PubMed  Google Scholar 

  14. Moghari MH, Ma B, Abolmaesumi P (2008) A theoretical comparison of different target registration error estimators. In: Proc MICCAI, pp 1032–1040

  15. Wein W, Khamene A, Clevert DA et al (2007) Simulation and fully automatic multimodal registration of medical ultrasound. In: Proc MICCAI, pp 136–143

  16. Navab N, Feuerstein M, Bichlmeier C (2007) Laparoscopic virtual mirror new interaction paradigm for monitor based augmented reality. In: Proc IEEE virtual reality, pp 43–50

  17. Seitel M, Maier-Hein L, Rietdorf U (2009) Towards a mixed reality environment for preoperative planning of cardiac surgery. Stud Health Technol Inform 142: 307–309

    PubMed  CAS  Google Scholar 

  18. West JB, Fitzpatrick JM, Toms SA et al (2001) Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48(4): 810–817. doi:10.1097/00006123-200104000-00023

    Article  PubMed  CAS  Google Scholar 

  19. Lepetit V, Fua P (2005) Monocular model-based 3D tracking of rigid objects: a survey. Comput Graph Vis 1(1): 1–89. doi:10.1561/0600000001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Seitel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seitel, M., Maier-Hein, L., Seitel, A. et al. RepliExplore: coupling physical and virtual anatomy models. Int J CARS 4, 417–424 (2009). https://doi.org/10.1007/s11548-009-0363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-009-0363-5

Keywords

Navigation