Skip to main content

Advertisement

Log in

A computer analysis method for correlating knee X-rays with continuous indicators

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To develop an image analysis method that can automatically find correlations between a set of plain radiographs and continuous clinical or physiological indicators.

Methods

Knee X-rays taken from the Baltimore Longitudinal Study of Aging are used in this study. The computer analysis method is based on the WND-CHARM image feature set filtered by using the Pearson correlation of each feature with the continuous variable, and the estimated value is determined by a weighted nearest neighbor interpolation.

Results

Experimental results using 300 radiographs show that the proposed method can correlate knee X-rays with physiological indicators such as sex, age, height, weight, and BMI. For instance, the Pearson correlation between the X-ray images and the height and weight were 0.59 and 0.62, respectively.

Conclusions

Using computer analysis, X-ray images can be correlated to continuous physiological variables that might not have a direct and straightforward link to the visual content of the radiograph. This approach of radiology image analysis can be used in population studies for detecting biomarkers and also in genome-wide association studies for studying the link between genes and anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman RD, Gold GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr Cartil 15: A1–A56

    Article  PubMed  Google Scholar 

  2. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  3. Boniatis I, Costaridou L, Cavouras D et al (2006) Osteoarthritis severity of the hip by computer-aided grading of radiographic images. Med Biol Eng Comput 44: 793–803

    Article  PubMed  CAS  Google Scholar 

  4. Boniatis I, Cavouras D, Costaridou L et al (2007) Computer-aided grading and quantification of hip osteoarthritis severity employing shape descriptors of radiographic hip joint space. Comput Biol Med 37: 1786–1795

    Article  PubMed  Google Scholar 

  5. Ding M, Dalstra M, Danielsen CC et al (1997) Age variations in the properties of human tibial trabecular bone. Bone Joint Surg Br 79: 995–1002

    Article  CAS  Google Scholar 

  6. Ding M, Odgaard A, Linde F et al (2002) Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res 79: 615–621

    Article  Google Scholar 

  7. Enquist H (2007) Narcissus’s new mirror: body images and meaning. J Art Technol 5: 3

    Google Scholar 

  8. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cyber 6: 269–285

    Google Scholar 

  9. Kellgren JH, Lawrence JS (1957) Radiologic assessment of osteoarthritis. Ann Rheum Dis 16: 494–501

    Article  PubMed  CAS  Google Scholar 

  10. Khodadadyan-Klostermann C, Von Seebach M, Taylor WR et al (2004) Distribution of bone mineral density with age and gender in the proximal tibia. Clin Biomech 19: 370–376

    Article  Google Scholar 

  11. Lynch JA, Hawkes DJ, Buckland-Wright JC (1991) Analysis of texture in macroradiographs of osteoarthritic knee using the fractal signature. Phys Med Biol 36: 709–722

    Article  PubMed  CAS  Google Scholar 

  12. Murphy RF, Velliste M, Yao J, Porreca G (2001) Searching online journals for fluorescence microscopy images depicting protein subcellular location patterns. In: Proceedings of 2nd IEEE international symposium on bioinformatics and biomedical engineering, pp 119–128

  13. Podsiadlo P, Wolski M, Stachowiak GW (2008) Automated selection of trabecular bone regions in knee radiographs. Med Phys 35: 1870–1883

    Article  PubMed  CAS  Google Scholar 

  14. Podsiadlo P, Dahl L, Englund M et al (2008) Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods. Osteoarthr Cartil 16: 323–329

    Article  PubMed  CAS  Google Scholar 

  15. Shamir L, Orlov N, Macura T et al (2008) Wndchrm—an open source utility for biological image analysis. BMC Source Code Biol Med 3: 13

    Article  Google Scholar 

  16. Shamir L, Orlov N, Eckley DM et al (2008) IICBU-2008—a benchmark suite for biological imaging. Med Bio Eng Comput 46: 943–947

    Article  Google Scholar 

  17. Shamir L (2008) Evaluation of face datasets as tools for assessing the performance of face recognition methods. Int J Comput Vision 79: 225–230

    Article  Google Scholar 

  18. Shamir L, Ling SM, Scott WW et al (2009) Knee X-ray image analysis method for automated detection of osteoarthritis. IEEE Trans Biomed Eng 56: 407–415

    Article  PubMed  Google Scholar 

  19. Shamir L, Orlov N, Goldberg IG (2009) Evaluation of the informativeness of multi-order image transforms. In: Proceedings of international conference on image processing, computer vision and pattern recognition, pp 37–42

  20. Shamir L, Ling SM, Scott WW et al (2009) Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthr Cartil 17: 1307–1312

    Article  PubMed  CAS  Google Scholar 

  21. Shamir L, Ling SM, Rahimi S et al (2009) Biometric identification using knee X-rays. Int J Biometrics 1: 365–370

    Article  Google Scholar 

  22. Shamir L, Macura T, Orlov N et al (2010) Impressionism, expressionism, surrealism: automated recognition of painters and schools of art. ACM Trans Appl Percept 7: 8

    Article  Google Scholar 

  23. Shock NW, Greulich RC, Andres R et al (1984) Normal human aging: the Baltimore longitudinal study of aging. NIH Publication No. 84-2450. Government Printing Office, Washington, DC

    Google Scholar 

  24. St Clair SF, Higuera C, Krebs V et al (2006) Hip and knee arthroplasty in the geriatric population. Clin Geriatr Med 3: 515–533

    Article  Google Scholar 

  25. Stockwell RA (1990) Cartilage failure in osteoarthritis: relevance of normal structure and function—a review. Clin Anat 4: 161–191

    Article  Google Scholar 

  26. Tamura H, Mori S, Yamavaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cyber 8: 460–472

    Article  Google Scholar 

  27. Teague MR (1979) Image analysis via the general theory of moments. J Opt Soc Am 70: 920

    Article  Google Scholar 

  28. Woloszynski T, Podsiadlo P, Stachowiak GW (2010) A signature dissimilarity measure for trabecular bone texture in knee radiographs. Med Phys 37: 2030–2043

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Shamir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamir, L. A computer analysis method for correlating knee X-rays with continuous indicators. Int J CARS 6, 699–704 (2011). https://doi.org/10.1007/s11548-011-0550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0550-z

Keywords

Navigation