Skip to main content
Log in

Average sound speed estimation using speckle analysis of medical ultrasound data

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Most ultrasound imaging systems assume a pre-determined sound propagation speed for imaging. However, a mismatch between assumed and real sound speeds can lead to spatial shift and defocus of ultrasound image, which may limit the applicability of ultrasound imaging. The estimation of real sound speed is important for improving positioning accuracy and focus quality of ultrasound image.

Method

A novel method using speckle analysis of ultrasound image is proposed for average sound speed estimation. Firstly, dynamic receive beam forming technology is employed to form ultrasound images. These ultrasound images are formed by same pre-beam formed radio frequency data but using different assumed sound speeds. Secondly, an improved speckle analysis method is proposed to evaluate focus quality of these ultrasound images. Thirdly, an iteration strategy is employed to locate the desired sound speed that corresponds to the best focus quality image.

Results

For quantitative evaluation, a group of ultrasound data with 20 different structure patterns is simulated. The comparison of estimated and simulated sound speeds shows speed estimation errors to be −0.7 ± 2.54 m/s and −1.30 ± 5.15 m/s for ultrasound data obtained by 128- and 64-active individual elements linear arrays, respectively. Furthermore, we validate our method via phantom experiments. The sound speed estimation error is −1.52 ± 8.81 m/s.

Conclusion

Quantitative evaluation proves that proposed method can estimate average sound speed accurately using single transducer with single scan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duck F (1990) Physical properties of tissue : a comprehensive reference book. Academic Press

  2. Anderson M, McKeag M, Trahey G (2000) The impact of sound speed errors on medical ultrasound imaging. J Acoust Soc Am 107: 3540–3548

    Article  PubMed  CAS  Google Scholar 

  3. Albert G (2000) The effect of acoustic velocity on phantom measurements. Ultrasound Med Biol 26(7): 1133–1143. doi:10.1016/s0301-5629(00)00248-9

    Article  Google Scholar 

  4. Robinson DE, Ophir J, Wilson LS, Chen CF (1991) Pulse-echo ultrasound speed measurements: progress and prospects. Ultrasound Med Biol 17(6): 633–646. doi:10.1016/0301-5629(91)90034-t

    Article  PubMed  CAS  Google Scholar 

  5. Robinson DE, Chen F, Wilson LS (1982) Measurement of velocity of propagation from ultrasonic pulse-echo data. Ultrasound Med Biol 8(4): 413–420. doi:10.1016/s0301-5629(82)80009-4

    Article  PubMed  CAS  Google Scholar 

  6. Robinson DE, Chen CF, Wilson LS (1983) Image matching for pulse echo measurement of ultrasonic velocity. Image Vis Comput 1(3): 145–151. doi:10.1016/0262-8856(83)90066-5

    Article  Google Scholar 

  7. Krucker JF, Fowlkes JB, Carson PL (2002) Sound speed estimation using ultrasound image registration. In: IEEE international symposium on biomedical imaging, pp 437–440

  8. Krucker JF, Fowlkes JB, Carson PL (2004) Sound speed estimation using automatic ultrasound image registration. IEEE Trans Ultrasonics Ferroelectr Frequency Control 51(9): 1095–1106

    Article  Google Scholar 

  9. Anderson M, Trahey G (1998) The direct estimation of sound speed using pulse-echo ultrasound. J Acoust Soc Am 104: 3099–3106

    Article  PubMed  CAS  Google Scholar 

  10. Napolitano D, Chou C-H, McLaughlin G, Ji T-L, Mo L, DeBusschere D, Steins R (2006) Sound speed correction in ultrasound imaging. Ultrasonics 44(Suppl 1): e43–e46. doi:10.1016/j.ultras.2006.06.061

    Article  PubMed  Google Scholar 

  11. Cho MH, Kang LH, Kim JS, Lee SY (2009) An efficient sound speed estimation method to enhance image resolution in ultrasound imaging. Ultrasonics 49(8): 774–778. doi:10.1016/j.ultras.2009.06.005

    Article  PubMed  CAS  Google Scholar 

  12. Shin H-C, Prager R, Ng J, Gomersall H, Kingsbury N, Treece G, Gee A (2009) Sensitivity to point-spread function parameters in medical ultrasound image deconvolution. Ultrasonics 49(3): 344–357. doi:10.1016/j.ultras.2008.10.005

    Article  PubMed  Google Scholar 

  13. Shin H-C, Prager R, Gomersall H, Kingsbury N, Treece G, Gee A (2010) Estimation of average speed of sound using deconvolution of medical ultrasound data. Ultrasound Med Biol 36(4): 623–636. doi:10.1016/j.ultrasmedbio.2010.01.011

    Article  PubMed  Google Scholar 

  14. Shin H-C, Prager R, Gomersall H, Kingsbury N, Treece G, Gee A (2010) Estimation of speed of sound in dual-layered media using medical ultrasound image deconvolution. Ultrasonics 50(7): 716–725. doi:10.1016/j.ultras.2010.02.008

    Article  PubMed  Google Scholar 

  15. Chen Q, Zagzebski JA (2004) Simulation study of effects of speed of sound and attenuation on ultrasound lateral resolution. Ultrasound Med Biol 30(10): 1297–1306. doi:10.1016/j.ultrasmedbio.2004.07.012

    Article  PubMed  Google Scholar 

  16. Yadong L, Zagzebski JA (1999) A frequency domain model for generating B-mode images with array transducers. IEEE Trans Ultrasonics Ferroelectr Frequency Control 46(3): 690–699

    Article  Google Scholar 

  17. Krotkov E (1988) Focusing. Int J Comput Vis 1(3): 223–237. doi:10.1007/bf00127822

    Article  Google Scholar 

  18. Ghose S, Oliver A, Martí R, Lladó X, Freixenet J, Mitra J, Vilanova J, Comet-Batlle J, Meriaudeau F (2012) Statistical shape and texture model of quadrature phase information for prostate segmentation. Int J Comput Assist Radiol Surg 7(1): 43–55. doi:10.1007/s11548-011-0616-y

    Article  PubMed  Google Scholar 

  19. Mercier L, Fonov V, Haegelen C, Del Maestro R, Petrecca K, Collins D (2012) Comparing two approaches to rigid registration of three-dimensional ultrasound and magnetic resonance images for neurosurgery. Int J Comput Assist Radiol Surg 7(1): 125–136. doi:10.1007/s11548-011-0620-2

    Article  PubMed  Google Scholar 

  20. Johan TM (2003) Ultrasonic speckle formation, analysis and processing applied to tissue characterization. Pattern Recognit Lett 24(4–5): 659–675. doi:10.1016/s0167-8655(02)00173-3

    Google Scholar 

  21. Wagner RF, Smith SW, Sandrik JM, Lopez H (1983) Statistics of speckle in ultrasound B-scans. IEEE Trans Sonics Ultrasonics 30(3): 156–163

    Article  Google Scholar 

  22. Jensen JA, Svendsen NB (1992) Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrasonics Ferroelectr Frequency Control 39(2): 262–267

    Article  CAS  Google Scholar 

  23. Jensen J (1996) Field: a program for simulating ultrasound systems. Med Biol Eng Comput 34: 351–353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, X., Azuma, T., Liang, J.T. et al. Average sound speed estimation using speckle analysis of medical ultrasound data. Int J CARS 7, 891–899 (2012). https://doi.org/10.1007/s11548-012-0690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0690-9

Keywords

Navigation