Skip to main content
Log in

A fluorolaser navigation system to guide linear surgical tool insertion

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Conventional navigation systems for minimally invasive orthopedic surgery require a secondary monitor to display guidance information generated with CT or MRI images. Newer systems use augmented reality to project surgical plans into binocular glasses. These surgical procedures are often mentally challenging and cumbersome to perform.

Method

A comprehensive surgical navigation system for direct guidance while minimizing radiation exposure was designed and built. System accuracy was evaluated using in vitro needle insertion experiments. The fluoroscopic-based navigation technique is combined with an existing laser guidance technique. As a result, the combined system is capable of surgical planning using two or more X-ray images rather than CT or MRI scans. Guidance information is directly projected onto the patient using two laser beams and not via a secondary monitor.

Results

We performed 15 in vitro needle insertion experiments as well as 6 phantom pedicle screw insertion experiments to validate navigation system accuracy. The planning accuracy of the system was found to be 2.32 mm and 2.28°, while its overall guidance accuracy was found to be 2.40 mm and 2.39°. System feasibility was demonstrated by successfully performing percutaneous pin insertion on phantoms.

Conclusion

Quantitative and qualitative evaluations of the fluorolaser navigation system show that it can support accurate guidance and intuitive surgical tool insertion procedures without preoperative 3D image volumes and registration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlenzka D, Laine T, Lund T (2000) Computer-assisted spine surgery. Eur Spine J 9(7): 57–64. doi:10.1007/PL00010023

    Article  Google Scholar 

  2. Fuchs H, State A, Pisano E, Garrett W, Hirota G, Livingston M, Whitton M, Pizer S (1996) Towards performing ultrasound-guided needle biopsies from within a head-mounted display visualization in biomedical computing. In: Höhne K, Kikinis R (eds), vol 1131. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 591–600. doi:10.1007/BFb0047002

  3. Blackwell M, Nikou C, DiGioia AM, Kanade T (2000) An image overlay system for medical data visualization. Med Image Anal 4(1): 67–72. doi:10.1016/s1361-8415(00)00007-4

    Article  PubMed  CAS  Google Scholar 

  4. Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer GS, Mathieu H, Taylor RH, Zinreich SJ, Fayad LM (2005) Image overlay guidance for needle insertion in CT scanner. IEEE Trans Biomed Eng 52(8): 1415–1424

    Article  PubMed  Google Scholar 

  5. Liao H, Ishihara H, Tran H, Masamune K, Sakuma I, Dohi T (2008) Fusion of laser guidance and 3-D autostereoscopic image overlay for precision-guided surgery medical imaging and augmented reality. In: Dohi T, Sakuma I, Liao H (eds), vol 5128. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 367–376. doi:10.1007/978-3-540-79982-5_40

  6. Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P (2011) Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepato-Biliary-Pancreatic Sci 18(4): 506–509. doi:10.1007/s00534-011-0385-6

    Article  Google Scholar 

  7. Gavaghan K, Oliveira-Santos T, Peterhans M, Reyes M, Kim H, Anderegg S, Weber S (2011) Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies. Int J Comput Assist Radiol Surg. doi:10.1007/s11548-011-0660-7

  8. Malik JM, Kamiryo T, Goble J, Kassell NF (1995) Stereotactic laser-guided approach to distal middle cerebral artery aneurysms. Acta Neurochirurgica 132(1): 138–144. doi:10.1007/bf01404862

    Article  PubMed  CAS  Google Scholar 

  9. Lavallee S, Toroccaz J, Sautot P et al (1996) Computer-assisted spinal surgery using anatomy-based registration. In: Computer-Integrated Surgery: Technology and Clinical Applications, the MIT Press, pp 425–229

  10. Hussman KL, Chalouplca JC, Berger SB (1998) Frameless laser-guided stereotaxis: a system for CT-monitored neurosurgical interventions. Stereotect Funct Neurosurg 71: 62–75. doi:10.1159/000029649

    Article  CAS  Google Scholar 

  11. Glossop N, Wedlake C, Moore J, Peters T, Wang Z (2003) Laser projection augmented reality system for computer assisted surgery medical image computing and computer-assisted intervention—MICCAI 2003. In: Ellis R, Peters T (eds), vol 2879. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 239–246. doi:10.1007/978-3-540-39903-2_30

  12. Marmurek J, Wedlake C, Pardasani U et al (2005) Image-guided laser projection for port placement in minimally invasive surgery. In: Medicine meets virtual reality 14, vol 119. IOS Press, pp 367–372

  13. Nitta N, Takahashi M, Tanaka T, Takazakura R, Sakashita Y, Furukawa A, Murata K, Shimoyama K (2007) Laser-guided computed tomography puncture system: simulation experiments using artificial phantom lesions and preliminary clinical experience. Radiat Med 25(4): 187–193. doi:10.1007/s11604-006-0116-0

    Article  PubMed  Google Scholar 

  14. Sasama T, Sugano N, Sato Y, Momoi Y, Koyama T, Nakajima Y, Sakuma I, Fujie M, Yonenobu K, Ochi T, Tamura S (2002) A novel laser guidance system for alignment of linear surgical tools: its principles and performance evaluation as a man—machine system medical image computing and computer-assisted intervention—MICCAI 2002. In: Dohi T, Kikinis R (eds) vol 2489. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 125–132. doi:10.1007/3-540-45787-9_16

  15. Nakajima Y, Sasama T, Momoi Y, Sugano N, Tamura Y, Dohi T, Lim S, Sakuma I, Mitsuishi M, Koyama T, Yonenobu K, Ohnishi I, Bessho M, Ohashi S, Nakamura K (2012) Surgical tool alignment guidance by drawing two cross-sectional laser-beam planes. IEEE Trans Biomed Eng (in-press)

  16. Foley KT, Simon DA, Rampersaud YR (2001) Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine 26(4): 347–351

    Article  PubMed  CAS  Google Scholar 

  17. Hofstetter R, Slomczykowski M, Sati M, Nolte L-P (1999) Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comput Aided Surg 4(2): 65–76. doi:10.3109/10929089909148161

    Article  PubMed  CAS  Google Scholar 

  18. Wiest P, Locken J, Heintz P, Mettler F (2002) CT scanning: a major source of radiation exposure. Semin Ultsd CT MRI 23(5): 402–410. doi:10.1053/sult.2002.34010

    Article  Google Scholar 

  19. Smith H, Welsch M, Sasso R, Vaccaro A (2008) Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 31(5): 532–537

    PubMed  Google Scholar 

  20. Nakajima Y, Yamamoto H, Sato Y, Sugano N, Momoi Y, Sasama T, Koyama T, Tamura Y, Yonenobu K, Sakuma I, Yoshikawa H, Ochi T, Tamura S (2004) Available range analysis of laser guidance system and its application to monolithic integration with optical tracker. Int Congr Ser 1268(0): 449–454. doi:10.1016/j.ics.2004.03.127

    Article  Google Scholar 

  21. Lim S, Douke T, Onogi S et al (2010) Assessment for the feasibility of external-fixation pin guidance using laser navigation. Jpn Soc Comp Aid Surg 12: 511–518

    Google Scholar 

  22. Livyatan H, Yaniv Z, Joskowicz L (2002) Robust automatic C-arm calibration for fluoroscopy-based navigation: a practical approach medical image computing and computer-assisted intervention—MICCAI 2002. In: Dohi T, Kikinis R (eds) vol 2489. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 60–68. doi:10.1007/3-540-45787-9_8

  23. Cho PS, Johnson RH (1998) Automated detection of bb pixel clusters in digital fluoroscopy images. Phys Med Biol 42: 2677–2682

    Article  Google Scholar 

  24. Yakimovsky Y, Cunningham R (1978) A system for extracting three-dimensional measurements from a stereo pair of TV cameras. Comput Graph Image Process 7(2): 195–210. doi:10.1016/0146-664x(78)90112-0

    Article  Google Scholar 

  25. Tate P, Lachine V, Fu L, Croitoru H, Sati M (2001) Performance and robustness of automatic fluoroscopic image calibration in a new computer assisted surgery system medical image computing and computer-assisted intervention—MICCAI 2001. In: Niessen W, Viergever M (eds) vol 2208. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 1130–1136. doi:10.1007/3-540-45468-3_135

  26. Ferreira S, Bruns R, Ferreira H, Matos G, David J, Brandao G, Silva E, Portugal L, Reis P, Souza A, Santos W (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta 597(2): 179–186. doi:10.1016/j.aca.2007.07.011

    Article  PubMed  CAS  Google Scholar 

  27. Gertzbein S, Robbins S (1990) Accuracy of pedicular screw placement in vivo. Spine 15(1): 11–14

    Article  PubMed  CAS  Google Scholar 

  28. Pechlivanis I, Kiriyanthan G, Engelhardt M, Scholz M, Lucke S, Harders A, Schmieder K (2009) Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system. Spine 34(4): 392–398

    Article  PubMed  Google Scholar 

  29. Belmont P, Klemme W, Dhawan A, Polly D (2001) In vivo accuracy of thoracic pedicle screws. Spine 26(21): 2340–2346

    Article  PubMed  Google Scholar 

  30. Weil Y, Liebergall M, Mosheiff R, Helfet D, Pearle A (2007) Long bone fracture reduction using a fluoroscopy-based navigation system: a feasibility and accuracy study. Comp Aided Surg 12(5): 295–302

    Google Scholar 

  31. Navab N, Bascle B, Loser M, Geiger B, Taylor R (2000) Visual servoing for automatic and uncalibrated needle placement for percutaneous procedures. In: Proceedings of the IEEE Conference on Computer vision and pattern recognition, 2000, vol.322. pp 327–334

  32. Croitoru H, Ellis RE, Prihar R, Small CF, Pichora DR (2001) Fixation-based surgery: a new technique for distal radius osteotomy. Comput Aided Surg 6(3): 160–169. doi:10.1002/igs.1019

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack T. Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J.T., Doke, T., Onogi, S. et al. A fluorolaser navigation system to guide linear surgical tool insertion. Int J CARS 7, 931–939 (2012). https://doi.org/10.1007/s11548-012-0743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0743-0

Keywords

Navigation