Skip to main content

Advertisement

Log in

Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices.

Methods

We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke’s Area, Broca’s Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography.

Results

We show that the network centrality of Wernicke’s area is significantly (p \(<\) 0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD.

Conclusions

The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.picsl.upenn.edu/ANTS/.

References

  1. Aoki Y, Abe O, Nippashi Y, Yamasue H (2013) Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies. Mol Autism 4(1):25

    Article  PubMed Central  PubMed  Google Scholar 

  2. Baio J (2012) Prevalence of autism spectrum disorders autism and developmental disabilities monitoring network, 14 sites, united states, 2008. Department of Health and Human Services. Centers for Disease Control and Prevention, Morbidity and Mortality Weekly Report

  3. Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Leiguarda R, Sigman M (2012) State-dependent changes of connectivity patterns and functional brain network topology in autism spectrum disorder. Neuropsychologia 50(14):3653–3662

    Article  PubMed  Google Scholar 

  4. Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M (2011) A big-world network in asd: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia 49(2):254–263

    Article  PubMed  Google Scholar 

  5. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  7. Burns MS, Fahy J (2010) Brocas area: rethinking classical concepts from a neuroscience perspective. Top Stroke Rehabil 17:401–410

    Article  PubMed  Google Scholar 

  8. Cauda F, Costa T, Palermo S, D’Agata F, Diano M, Bianco F, Duca S, Keller R (2013) Concordance of white matter and gray matter abnormalities in autism spectrum disorders: a voxel-based meta-analysis study. Hum Brain Mapp. doi:10.1002/hbm.22313

  9. Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, Metzger LM, Shoushtari CS, Splinter R, Reich W (2003) Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord 33(4):427–433

    Article  PubMed  Google Scholar 

  10. Dehaene-Lambertz G, Hertz-Pannier L, Dubois J, Mériaux S, Roche A, Sigman M, Dehaene S (2006) Functional organization of perisylvian activation during presentation of sentences in preverbal infants. Proc Natl Acad Sci 103(38):14,240–14,245

    Article  CAS  Google Scholar 

  11. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980

    Article  PubMed  Google Scholar 

  12. DeWitt I, Rauschecker JP (2012) Phoneme and word recognition in the auditory ventral stream. Proc Natl Acad Sci USA 109(8):E505–E514

    Google Scholar 

  13. Ecker C, Marquand A, Mouro-Miranda J, Johnston P, Daly EM, Brammer MJ, Maltezos S, Murphy CM, Robertson D, Williams SC, Murphy DGM (2010) Describing the brain in autism in five dimensions: magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 30(32):10,612–10,623

    Article  CAS  Google Scholar 

  14. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22

    Article  PubMed  Google Scholar 

  15. Fletcher PT, Whitaker RT, Tao R, DuBray MB, Froehlich A, Ravichandran C, Alexander AL, Bigler ED, Lange N, Lainhart JE (2010) Microstructural connectivity of the arcuate fasciculus in adolescents with high-functioning autism. NeuroImage 51(3):1117–1125

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ford A, Triplett W, Sudhyadhom A, Gullett JM, McGregor K, FitzGerald D, Mareci T, White K, Crosson B (2013) Brocas area and its striatal and thalamic connections: A diffusion-mri tractography study. Front Neuroanat 7:8. doi:10.3389/fnana.2013.00008

  17. Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome: promise, progress, and pitfalls. NeuroImage 80:426–444

    Article  PubMed  Google Scholar 

  18. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35–41

    Article  Google Scholar 

  19. Fritzsche KH, Neher PF, Reicht I, van Bruggen T, Goch C, Reisert M, Nolden M, Zelzer S, Meinzer HP, Stieltjes B (2012) Mitk diffusion imaging. Methods Inf Med 51(5):441–448

    Google Scholar 

  20. Goch C, Stieltjes B, Henze R, Hering J, Meinzer HP, Fritzsche K (2013) Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis. In: Meinzer HP, Deserno TM, Handels H, Tolxdorff T (eds) Bildverarbeitung für die Medizin 2013, Informatik aktuell. Springer, Berlin, pp 51–56

    Chapter  Google Scholar 

  21. Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci 110(36):E3435–E3444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Greimel E, Nehrkorn B, Schulte-Rüther M, Fink G, Nickl-Jockschat T, Herpertz-Dahlmann B, Konrad K, Eickhoff S (2013) Changes in grey matter development in autism spectrum disorder. Brain Struct Funct 218(4):929–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Griffa A, Baumann PS, Thiran JP, Hagmann P (2013) Structural connectomics in brain diseases. NeuroImage 80:515–526

    Article  PubMed  Google Scholar 

  24. Groen W, Tesink C, Petersson K, van Berkum J, van der Gaag R, Hagoort P, Buitelaar J (2010) Semantic, factual, and social language comprehension in adolescents with autism: an FMRI study. Cereb Cortex 20(8):1937–1945

    Article  CAS  PubMed  Google Scholar 

  25. Howlin P (2003) Outcome in high-functioning adults with autism with and without early language delays: implications for the differentiation between autism and Asperger syndrome. J Autism Dev Disord 33(1):3–13

    Article  PubMed  Google Scholar 

  26. Howlin P, Goode S, Hutton J, Rutter M (2004) Adult outcome for children with autism. J Child Psychol Psychiatry 45(2):212–229

    Article  PubMed  Google Scholar 

  27. Ingalhalikar M, Parker D, Bloy L, Roberts TP, Verma R (2011) Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD. NeuroImage 57(3):918–927

    Article  PubMed Central  PubMed  Google Scholar 

  28. Jakab A, Emri M, Spisak T, Szeman-Nagy A, Beres M, Kis SA, Molnar P, Berenyi E (2013) Autistic traits in neurotypical adults: correlates of graph theoretical functional network topology and white matter anisotropy patterns. PLoS ONE 8(4):e60,982

    Article  CAS  Google Scholar 

  29. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. NeuroImage 62(2):782–790

    Article  PubMed  Google Scholar 

  30. Johansen-Berg H (2013) Human connectomics what will the future demand? NeuroImage 80:541–544

    Article  PubMed  Google Scholar 

  31. Joseph RM, Fricker Z, Fenoglio A, Lindgren KA, Knaus TA, Tager-Flusberg H (2013) Structural asymmetries of language-related gray and white matter and their relationship to language function in young children with ASD. Brain Imaging Behav 1–13.

  32. Langen M, Schnack HG, Nederveen H, Bos D, Lahuis BE, de Jonge MV, van Engeland H, Durston S (2009) Changes in the developmental trajectories of striatum in autism. Biol Psychiatry 66(4):327–333

    Article  PubMed  Google Scholar 

  33. Lee JE, Bigler ED, Alexander AL, Lazar M, DuBray MB, Chung MK, Johnson M, Morgan J, Miller JN, McMahon WM, Lu J, Jeong EK, Lainhart JE (2007) Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism. Neurosci Lett 424(2):127–132

    Article  CAS  PubMed  Google Scholar 

  34. Lee JE, Chung MK, Lazar M, DuBray MB, Kim J, Bigler ED, Lainhart JE, Alexander AL (2009) A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. NeuroImage 44(3):870–883

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lewis WW, Sahin M, Scherrer B, Peters JM, Suarez RO, Vogel-Farley VK, Jeste SS, Gregas MC, Prabhu SP, Nelson CA, Warfield SK (2012) Impaired language pathways in tuberous sclerosis complex patients with autism spectrum disorders. Cereb Cortex 23(7):1526–1532

    Google Scholar 

  36. Li H, Xue Z, Ellmore TM, Frye RE, Wong ST (2012) Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders. Hum Brain Mapp 35(2):396–413

    Google Scholar 

  37. Li Y, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T (2009) Brain anatomical network and intelligence. PLoS Comput Biol 5(5): e1000395

    Google Scholar 

  38. Lord C, Risi S, Lambrecht L, Leventhal B, DiLavore P, Pickles A, Rutter M (2000) The autism diagnostic observation schedulegeneric: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30(3):205–223

    Article  CAS  PubMed  Google Scholar 

  39. Lord C, Rutter M, Couteur A (1994) Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24(5):659–685

    Article  CAS  PubMed  Google Scholar 

  40. McGrath J, Johnson K, O’Hanlon E, Garavan H, Gallagher L, Leemans A (2013) White matter and visuospatial processing in autism: a constrained spherical deconvolution tractography study. Autism Res 6(5):307–319

    Article  PubMed  Google Scholar 

  41. Mills BD, Lai J, Brown TT, Erhart M, Halgren E, Reilly J, Dale A, Appelbaum M, Moses P (2013) White matter microstructure correlates of narrative production in typically developing children and children with high functioning autism. Neuropsychologia 51(10):1933–1941

    Google Scholar 

  42. Mueller S, Keeser D, Samson AC, Kirsch V, Blautzik J, Grothe M, Erat O, Hegenloh M, Coates U, Reiser MF, Hennig-Fast K, Meindl T (2013) Convergent findings of altered functional and structural brain connectivity in individuals with high functioning autism: a multimodal mri study. PLoS ONE 8(6):e67,329

    Google Scholar 

  43. Nebel MB, Joel SE, Muschelli J, Barber AD, Caffo BS, Pekar JJ, Mostofsky SH (2012) Disruption of functional organization within the primary motor cortex in children with autism. Hum Brain Mapp 35(2):567–580

    Google Scholar 

  44. Neher PF, Stieltjes B, Reisert M, Reicht I, Meinzer HP, Fritzsche KH (2012) MITK Global Tractography. In SPIE medical imaging 2012: image processing

  45. Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein K, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg 8(4):607–620

    Article  PubMed  Google Scholar 

  46. Oldfield R (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  47. Poustka L, Jennen-Steinmetz C, Henze R, Vomstein K, Haffner J, Stieltjes B (2012) Fronto-temporal disconnectivity and symptom severity in children with autism spectrum disorder. World J Biol Psychiatry 13(4):269–280

    Article  PubMed  Google Scholar 

  48. Raven JC, Court JH, Raven J (1995) Coloured progressive matrices. Psychologist Press, Oxford

    Google Scholar 

  49. Rinehart NJ, Bradshaw JL, Brereton AV, Tonge BJ (2002) A clinical and neurobehavioural review of high-functioning autism and Asperger’s disorder. Aust N Z J Psychiatry 36(6):762–770

    Article  PubMed  Google Scholar 

  50. Roine U, Roine T, Salmi J, Nieminen-Von Wendt T, Leppämäki S, Rintahaka P, Tani P, Leemans A, Sams M (2013) Increased coherence of white matter fiber tract organization in adults with Asperger’s syndrome: a diffusion tensor imaging study. Autism Res 6(6):642–650

    Google Scholar 

  51. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in mri. NeuroImage 22(3):1060–1075

    Article  CAS  PubMed  Google Scholar 

  52. Seo EH, Lee DY, Lee JM, Park JS, Sohn BK, Lee DS, Choe YM, Woo JI (2013) Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimers disease. PLoS ONE 8(1):e53,922

    Article  CAS  Google Scholar 

  53. Sporns O (2013) The human connectome: origins and challenges. NeuroImage 80:53–61

    Article  PubMed  Google Scholar 

  54. Szaflarski JP, Rajagopal A, Altaye M, Byars AW, Jacola L, Schmithorst VJ, Schapiro MB, Plante E, Holland SK (2012) Left-handedness and language lateralization in children. Brain Res 1433:85–97

    Article  CAS  PubMed  Google Scholar 

  55. Travers BG, Adluru N, Ennis C, Tromp DPM, Destiche D, Doran S, Bigler ED, Lange N, Lainhart JE, Alexander AL (2012) Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res 5(5):289–313

    Google Scholar 

  56. Uddin LQ, Menon V, Young CB, Ryali S, Chen T, Khouzam A, Minshew NJ, Hardan AY (2011) Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biol Psychiatry 70(9):833–841

    Article  PubMed Central  PubMed  Google Scholar 

  57. Walker L, Gozzi M, Lenroot R, Thurm A, Behseta B, Swedo S, Pierpaoli C (2012) Diffusion tensor imaging in young children with autism: biological effects and potential confounds. Biol Psychiatry 72(12):1043–1051

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was in part financed by the Helmholtz International Graduate School for Cancer Research. Dr. Maier-Hein (né Fritzsche) received support from the German Research Foundation (DFG), Grant ME 833/15-1.

Conflict of interest

Caspar J.Goch, Bram Stieltjes, Romy Henze, Jan Hering, Luise1 Poustka, Hans-Peter Meinzer, and Klaus H. Maier-Hein declare that they have no conflict of interest.

Ethics Statement and Informed Consent All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caspar J. Goch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goch, C.J., Stieltjes, B., Henze, R. et al. Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis. Int J CARS 9, 357–365 (2014). https://doi.org/10.1007/s11548-014-0977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-0977-0

Keywords

Navigation