Skip to main content
Log in

Detection and visualization of dural pulsation for spine needle interventions

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Epidural and spinal anesthesia are common procedures that require a needle to be inserted into the patient’s spine to deliver an anesthetic. Traditionally, these procedures were performed without image guidance, using only palpation to identify the correct vertebral interspace. More recently, ultrasound has seen widespread use in guiding spinal needle interventions. Dural pulsation is a valuable cue for finding a path through the vertebral interspace and for determining needle insertion depth. However, dural pulsation is challenging to detect and not perceptible in many cases. Here, a method for automatically detecting very subtle dural pulsation from live ultrasound video is presented.

Methods

A periodic model is fit to the B-mode intenstity values through extended Kalman filtering. The fitted frequencies and amplitudes are used to detect and visualize dural pulsation. The method is validated retrospectively on synthetic and human video and used in real time on an interventional spinal phantom.

Results

This method was capable of quickly identifying subtle dural pulsation and was robust to background noise and motion. The pulsation visualization reduced both the normalized path length and number of attempts required in a mock epidural procedure.

Conclusion

This technique is able to localize the dura and help find a clear needle trajectory to the epidural space. It can be run in real time on commercial ultrasound systems and has the potential to improve ultrasound guidance of spine needle interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amir-Khalili A, Peyrat JM, Abinahed J, Al-Alao O, Al-Ansari A, Hamarneh G, Abugharbieh R (2014) Auto localization and segmentation of occluded vessels in robot-assisted partial nephrectomy. In: Golland P, Hata N, Barillot C, Hornegger J, Howe R (eds) Medical image computing and computer-assisted intervention-MICCAI 2014, Springer, pp 407–414

  2. Bittanti S, Savaresi SM (2000) On the parametrization and design of an extended Kalman filter frequency tracker. Autom Control IEEE Trans 45(9):1718–1724

    Article  Google Scholar 

  3. Briassouli A, Ahuja N (2007) Extraction and analysis of multiple periodic motions in video sequences. Pattern Anal Mach Intell IEEE Trans 29(7):1244–1261

    Article  Google Scholar 

  4. Broadbent C, Maxwell W, Ferrie R, Wilson D, Gawne-Cain M, Russell R (2000) Ability of anaesthetists to identify a marked lumbar interspace. Anaesthesia 55(11):1122–1126

    Article  CAS  PubMed  Google Scholar 

  5. Chen ECS, Ameri G, Li H, Sondekoppam RV, Ganapathy S, Peters TM (2014) Navigated simulator for spinal needle interventions. Studies in health technology and informatics 196, pp 56–60. doi:10.3233/978-1-61499-375-9-56

  6. Conroy P, Luyet C, McCartney C, McHardy P (2013) Real-time ultrasound-guided spinal anaesthesia: a prospective observational study of a new approach. Anesthesiol Res Pract 2013. doi:10.1155/2013/525818

  7. Cook T, Counsell D, Wildsmith J (2009) Major complications of central neuraxial block: report on the third national audit project of the royal college of anaesthetists. Br J Anaesth 102(2):179–190

    Article  CAS  PubMed  Google Scholar 

  8. Cutler R, Davis LS (2000) Robust real-time periodic motion detection, analysis, and applications. Pattern Anal Mach Intell IEEE Trans 22(8):781–796

    Article  Google Scholar 

  9. Fisher RA (1929) Tests of significance in harmonic analysis. Proc R Soc London Ser A 125(796):54–59

    Article  Google Scholar 

  10. Furness G, Reilly M, Kuchi S (2002) An evaluation of ultrasound imaging for identificationof lumbar intervertebral level. Anaesthesia 57(3):277–280

    Article  CAS  PubMed  Google Scholar 

  11. Grau T, Leipold RW, Horter J, Conradi R, Martin EO, Motsch J (2001) Paramedian access to the epidural space: the optimum window for ultrasound imaging. J Clin Anesth 13(3):213–217. doi:10.1016/S0952-8180(01)00245-8

    Article  CAS  PubMed  Google Scholar 

  12. Karmakar M, Li X, Ho AH, Kwok W, Chui P (2009) Real-time ultrasound-guided paramedian epidural access: evaluation of a novel in-plane technique. Br J Anaesth 102(6):845–854

    Article  CAS  PubMed  Google Scholar 

  13. Kimura A, Seichi A, Inoue H, Endo T, Sato M, Higashi T, Hoshino Y (2012) Ultrasonographic quantification of spinal cord and dural pulsations during cervical laminoplasty in patients with compressive myelopathy. Eur Spine J 21(12):2450–2455

    Article  PubMed Central  PubMed  Google Scholar 

  14. Liu C, Torralba A, Freeman WT, Durand F, Adelson EH (2005) Motion magnification. In: ACM transactions on graphics (TOG), vol 24. ACM, pp 519–526

  15. McLeod AJ, Baxter JS, de Ribaupierre S, Peters TM (2014) Motion magnification for endoscopic surgery. In: Yaniv Z, Holmes D (eds) SPIE medical imaging. International Society for Optics and Photonics, pp 90,360C–90,360C–8

  16. McNames J, Aboy M (2008) Statistical modeling of cardiovascular signals and parameter estimation based on the extended Kalman filter. Biomed Eng IEEE Trans 55(1):119–129

    Article  Google Scholar 

  17. Pogalin E, Smeulders AW, Thean AH (2008) Visual quasi-periodicity. In: Computer vision and pattern recognition, 2008. CVPR 2008. IEEE Conference on, pp 1–8

  18. Polana R, Nelson RC (1997) Detection and recognition of periodic, nonrigid motion. Int J Comput Vis 23(3):261–282

    Article  Google Scholar 

  19. Pöpping DM, Elia N, Van Aken HK, Marret E, Schug SA, Kranke P, Wenk M, Tramèr MR (2014) Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Ann Surg 259(6):1056–1067

    Article  PubMed  Google Scholar 

  20. Quinn BG, Hannan EJ (2001) The estimation and tracking of frequency. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Rajakulendran Y, Rahman S, Venkat N (1999) Long-term neurological complication following traumatic damage to the spinal cord with a 25 gauge whitacre spinal needle. Int J Obstet Anesth 8(1):62–66

    Article  CAS  PubMed  Google Scholar 

  22. Ran Y, Weiss I, Zheng Q, Davis LS (2007) Pedestrian detection via periodic motion analysis. Int J Comput Vis 71(2):143–160

    Article  Google Scholar 

  23. Rasoulian A, Abolmaesumi P, Mousavi P (2012) Feature-based multibody rigid registration of CT and ultrasound images of lumbar spine. Med Phys 39(6):3154–3166

    Article  PubMed  Google Scholar 

  24. Seitz SM, Dyer CR (1997) View-invariant analysis of cyclic motion. Int J Comput Vis 25(3):231–251

    Article  Google Scholar 

  25. Shaikh F, Brzezinski J, Alexander S, Arzola C, Carvalho JC, Beyene J, Sung L (2013) Ultrasound imaging for lumbar punctures and epidural catheterisations: systematic review and meta-analysis. BMJ 346:f1720

    Article  PubMed  Google Scholar 

  26. Simon D, Chia TL (2002) Kalman filtering with state equality constraints. Aerosp Electron Syst IEEE Trans 38(1):128–136

    Article  Google Scholar 

  27. Wadhwa N, Rubinstein M, Durand F, Freeman WT (2013) Phase-based video motion processing. ACM Trans Graph (TOG) 32(4):80

    Article  Google Scholar 

  28. Wadhwa N, Rubinstein M, Durand F, Freeman WT (2014) Riesz pyramids for fast phase-based video magnification. In: Computational Photography, IEEE International Conference on. doi:10.1109/ICCPHOT.2014.6831820

  29. Wu HY, Rubinstein M, Shih E, Guttag JV, Durand F, Freeman WT (2012) Eulerian video magnification for revealing subtle changes in the world. ACM Trans Graph 31(4):65

    Article  Google Scholar 

  30. Yuen SG, Novotny PM, Howe RD (2008) Quasiperiodic predictive filtering for robot-assisted beating heart surgery. In: Robotics and automation, 2008. ICRA 2008. IEEE International Conference on, pp 3875–3880. IEEE

Download references

Acknowledgments

This research received funding from the Canadian Insitute of Health Research (MOP-258652) and the Canadian Foundation for Innovation (CFI # 20994). Funding for Jonathan McLeod was provided by the Vanier Canadian Graduate Scholarship Program.

Conflict of interest

Jonathan McLeod, John Baxter, Golafsoun Ameri, Sugantha Ganapathy, Terry Peters and Elvis Chen declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jonathan McLeod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLeod, A., Baxter, J.S.H., Ameri, G. et al. Detection and visualization of dural pulsation for spine needle interventions. Int J CARS 10, 947–958 (2015). https://doi.org/10.1007/s11548-015-1192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1192-3

Keywords

Navigation