Skip to main content
Log in

Individual feature maps: a patient-specific analysis tool with applications in temporal lobe epilepsy

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

MRI-based diagnosis of temporal lobe epilepsy (TLE) can be challenging when pathology is not visually evident due to low image contrast or small lesion size. Computer-assisted analyses are able to detect lesions common in a specific patient population, but most techniques do not address clinically relevant individual pathologies resulting from the heterogeneous etiology of the disease. We propose a novel method to supplement the radiological inspection of TLE patients (\(n=15\)) providing patient-specific quantitative assessment.

Method

Regions of interest are defined across the brain and volume, relaxometry, and diffusion features are extracted from them. Statistical comparisons between individual patients and a healthy control group (\(n=17\)) are performed on these features, identifying and visualizing significant differences through individual feature maps. Four maps are created per patient showing differences in intensity, asymmetry, and volume.

Results

Detailed reports were generated per patient. Abnormal hippocampal intensity and volume differences were detected in all patients diagnosed with mesial temporal sclerosis (MTS). Abnormal intensities in the temporal cortex were identified in patients with no MTS. A laterality score correctly distinguished left from right TLE in 12 out of 15 patients.

Conclusion

The proposed focus on subject-specific quantitative changes has the potential of improving the assessment of TLE patients using MRI techniques, possibly even redefining current imaging protocols for TLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. FSL software: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.

  2. Freesurfer software: http://surfer.nmr.mgh.harvard.edu/.

  3. According to the FreeSurfer documentation, this step is an affine transform to the MNI305 atlas. See http://freesurfer.net/fswiki/talairach.

References

  1. Ahmadi M, Hagler D, McDonald C, Tecoma E, Iragui V, Dale A, Halgren E (2009) Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. Am J Neuroradiol 30(9):1740–1747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4(3):316–329

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6):805–821

    Article  CAS  PubMed  Google Scholar 

  4. Beg M, Miller MI, Trouve A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139–157

    Article  Google Scholar 

  5. Bernasconi N, Kinay D, Andermann F, Antel S, Bernasconi A (2005) Analysis of shape and positioning of the hippocampal formation: an MRI study in patients with partial epilepsy and healthy controls. Brain 128(10):2442–2452

    Article  CAS  PubMed  Google Scholar 

  6. Bernhardt BC, Bernasconi N, Kim H, Bernasconi A (2012) Mapping thalamocortical network pathology in temporal lobe epilepsy. Neurology 78(2):129–136

    Article  PubMed  Google Scholar 

  7. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14(5):365–376

    Article  CAS  PubMed  Google Scholar 

  8. Cantor-Rivera D, Khan AR, Goubran M, Mirsattari SM, Peters TM (2015) Detection of temporal lobe epilepsy using support vector machines in multi-parametric quantitative MR imaging. Comput Med Imaging Graph 41:14–28 Machine Learning in Medical Imaging

    Article  PubMed  Google Scholar 

  9. Coan AC, Kubota B, Bergo FPG, Campos BM, Cendes F (2014) 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis. Am J Neuroradiol 35(1):77–83

    Article  CAS  PubMed  Google Scholar 

  10. Crawford JR, Garthwaite PH, Azzalini A, Howell DC, Laws KR (2006) Testing for a deficit in single-case studies: effects of departures from normality. Neuropsychologia 44(4):666–677

    Article  PubMed  Google Scholar 

  11. Crawford JR, Garthwaite PH, Howell DC (2009) On comparing a single case with a control sample: an alternative perspective. Neuropsychologia 47(13):2690–2695

    Article  PubMed  Google Scholar 

  12. Crawford JR, Garthwaite PH (2012) Single-case research in neuropsychology: a comparison of five forms of t-test for comparing a case to controls. Cortex 48(8):1009–1016

    Article  PubMed  Google Scholar 

  13. Crawford J, Howell DC (1998) Comparing an individual’s test score against norms derived from small samples. Clin Neuropsychol 12(4):482–486

    Article  Google Scholar 

  14. Deoni SC, Rutt BK, Peters TM (2003) Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med 49(3):515–526

    Article  PubMed  Google Scholar 

  15. Deoni SCL, Peters TM, Rutt BK (2005) High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 53(1):237–241

    Article  PubMed  Google Scholar 

  16. Deoni SC, Rutt BK, Peters TM (2006) Synthetic T1-weighted brain image generation with incorporated coil intensity correction using DESPOT1. Magn Reson Imaging 24(9):1241–1248

    Article  PubMed  Google Scholar 

  17. Deoni SC (2007) High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI). J Magn Reson Imaging 26(4):1106–1111

    Article  PubMed  Google Scholar 

  18. Deoni SC (2009) Transverse relaxation time (T2) mapping in the brain with off-resonance correction using phase-cycled steady-state free precession imaging. J Magn Reson Imaging 30(2):411–417

    Article  PubMed  Google Scholar 

  19. Esmaeilzadeh M, Soltanian-Zadeh H, Jafari-Khouzani K (2012) Mesial temporal lobe epilepsy lateralization using SPHARM-based features of hippocampus and SVM. In: Proceedings of SPIE, vol 8314, pp 83144H–83144H-10

  20. Focke NK, Yogarajah M, Bonelli SB, Bartlett PA, Symms MR, Duncan JS (2008) Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage 40(2):728–737

    Article  PubMed  Google Scholar 

  21. Geweke JF, Singleton KJ (1980) Interpreting the likelihood ration statistic in factor models when sample size is small. J Am Stat Assoc 75:133–137

    Article  Google Scholar 

  22. Gross DW, Concha L, Beaulieu C (2006) Extratemporal white matter abnormalities in mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging. Epilepsia 47(8):1360–1363

    Article  PubMed  Google Scholar 

  23. Gross DW (2011) Diffusion tensor imaging in temporal lobe epilepsy. Epilepsia 52:32–34

    Article  PubMed  Google Scholar 

  24. Huang H, Ceritoglu C, Li X, Qiu A, Miller MI, van Zijl PC, Mori S (2008) Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping. Magn Reson Imaging 26(9):1294–1302

  25. Jafari-Khouzani K, Elisevich K, Patel S, Smith B, Soltanian-Zadeh H (2010) FLAIR signal and texture analysis for lateralizing mesial temporal lobe epilepsy. Neuroimage 49(2):1559–1571

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    Article  CAS  PubMed  Google Scholar 

  27. Keller SS, Ahrens T, Mohammadi S, Gerdes JS, Möddel G, Kellinghaus C, Deppe M (2013) Voxel-based statistical analysis of fractional anisotropy and mean diffusivity in patients with unilateral temporal lobe epilepsy of unknown cause. J Neuroimaging 23(3):352–359

    Article  PubMed  Google Scholar 

  28. Keller SS, Schoene-Bake JC, Gerdes JS, Weber B, Deppe M (2012) Concomitant fractional anisotropy and volumetric abnormalities in temporal lobe epilepsy: cross-sectional evidence for progressive neurologic injury. PloS One 7(10):e46,791

    Article  CAS  Google Scholar 

  29. Keller SS, O’Muircheartaigh J, Traynor C, Towgood K, Barker GJ, Richardson MP (2014) Thalamotemporal impairment in temporal lobe epilepsy: a combined mri analysis of structure, integrity, and connectivity. Epilepsia 55(2):306–315

    Article  PubMed Central  PubMed  Google Scholar 

  30. Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49(5):741–757

    Article  PubMed  Google Scholar 

  31. Kemmotsu N, Girard HM, Bernhardt BC, Bonilha L, Lin JJ, Tecoma ES, Iragui VJ, Hagler DJ, Halgren E, McDonald CR (2011) Mri analysis in temporal lobe epilepsy: cortical thinning and white matter disruptions are related to side of seizure onset. Epilepsia 52(12):2257–2266

    Article  PubMed Central  PubMed  Google Scholar 

  32. Khan AR, Goubran M, de Ribaupierre S, Hammond RR, Burneo JG, Parrent AG, Peters TM (2014) Quantitative relaxometry and diffusion MRI for lateralization in MTS and non-MTS temporal lobe epilepsy. Epilepsy Res 108(3):506–516

    Article  PubMed  Google Scholar 

  33. Labate A, Gambardella A, Aguglia U, Condino F, Ventura P, Lanza P, Quattrone A (2010) Temporal lobe abnormalities on brain MRI in healthy volunteers a prospective case–control study. Neurology 74(7):553–557

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Xue Z, Dulay M, Verma A, Wong S, Karmonik C, Grossman R, Wong S (2010) Distinguishing left or right temporal lobe epilepsy from controls using fractional anisotropy asymmetry analysis. In: Liao H, Edwards P, Pan X, Fan Y, Yang G-Z (eds) Medical imaging and augmented reality, vol 6326 of lecture notes in computer science. Springer, Berlin, pp 219–227

    Google Scholar 

  35. Liu M, Concha L, Lebel C, Beaulieu C, Gross DW (2012) Mesial temporal sclerosis is linked with more widespread white matter changes in temporal lobe epilepsy. NeuroImage Clin 1(1):99–105

    Article  PubMed Central  PubMed  Google Scholar 

  36. Memarian N, Thompson PM, Engel J, Staba RJ (2013) Quantitative analysis of structural neuroimaging of mesial temporal lobe epilepsy. Imaging Med 5(3):219–235

    Article  CAS  Google Scholar 

  37. Mueller SG, Laxer KD, Schuff N, Weiner MW (2007) Voxel-based T2 relaxation rate measurements in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia 48(2):220–228

    Article  PubMed Central  PubMed  Google Scholar 

  38. Pell GS, Briellmann RS, Waites AB, Abbott DF, Jackson GD (2004) Voxel-based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy. Neuroimage 21(2):707–713

    Article  PubMed  Google Scholar 

  39. Pell GS, Briellmann RS, Pardoe H, Abbott DF, Jackson GD (2008) Composite voxel-based analysis of volume and T2 relaxometry in temporal lobe epilepsy. Neuroimage 39(3):1151–1161

    Article  PubMed  Google Scholar 

  40. Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, Rutecki P, Hermann B (2005) Ipsilateral and contralateral mri volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates. Epilepsia 46(3):420–430

    Article  PubMed  Google Scholar 

  41. Shoham S, Youdim M (2000) Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases. Cell Mol Biol (Noisy-le-Grand, France) 46(4):743–760

    CAS  Google Scholar 

  42. Shon YM, Kim YI, Koo BB, Lee JM, Kim HJ, Kim WJ, Ahn KJ, Yang DW (2010) Group-specific regional white matter abnormality revealed in diffusion tensor imaging of medial temporal lobe epilepsy without hippocampal sclerosis. Epilepsia 51(4):529–535

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported the Canadian Institutes for Health Research (CIHR Grant MOP 184897), Canadian Foundation for Innovation, Leading Edge Fund 20994, and EpLink: The Ontario Brain Institute (OBI) Epilepsy Project. A. R. Khan was supported by fellowships from the CIHR and Epilepsy Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Cantor-Rivera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This research study was approved by the Office of Research Ethics of Western University (Canada) and all procedures were in accordance with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (png 374 KB)

Supplementary material 2 (png 411 KB)

Supplementary material 3 (png 376 KB)

Supplementary material 4 (png 343 KB)

Supplementary material 5 (png 366 KB)

Supplementary material 6 (png 360 KB)

Supplementary material 7 (png 353 KB)

Supplementary material 8 (png 409 KB)

Supplementary material 9 (png 349 KB)

Supplementary material 10 (png 360 KB)

Supplementary material 11 (png 391 KB)

Supplementary material 12 (png 403 KB)

Supplementary material 13 (png 387 KB)

Supplementary material 14 (png 364 KB)

Supplementary material 15 (png 339 KB)

Supplementary material 16 (txt 5 KB)

Supplementary material 17 (txt 2 KB)

Supplementary material 18 (txt 2 KB)

Supplementary material 19 (txt 1 KB)

Supplementary material 20 (txt 1 KB)

Supplementary material 21 (txt 1 KB)

Supplementary material 22 (txt 1 KB)

Supplementary material 23 (txt 8 KB)

Supplementary material 24 (txt 1 KB)

Supplementary material 25 (txt 2 KB)

Supplementary material 26 (txt 1 KB)

Supplementary material 27 (txt 1 KB)

Supplementary material 28 (txt 0 KB)

Supplementary material 29 (txt 0 KB)

Supplementary material 30 (txt 0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantor-Rivera, D., Baxter, J.S.H., de Ribaupierrre, S. et al. Individual feature maps: a patient-specific analysis tool with applications in temporal lobe epilepsy. Int J CARS 11, 53–71 (2016). https://doi.org/10.1007/s11548-015-1258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1258-2

Keywords

Navigation