Skip to main content
Log in

Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Minimally invasive cochlear implantation is a novel surgical technique which requires highly accurate guidance of a drilling tool along a trajectory from the mastoid surface toward the basal turn of the cochlea. The authors propose a passive, reconfigurable, parallel robot which can be directly attached to bone anchors implanted in a patient’s skull, avoiding the need for surgical tracking systems. Prior to clinical trials, methods are necessary to patient specifically optimize the configuration of the mechanism with respect to accuracy and stability. Furthermore, the achievable accuracy has to be determined experimentally.

Methods

A comprehensive error model of the proposed mechanism is established, taking into account all relevant error sources identified in previous studies. Two optimization criteria to exploit the given task redundancy and reconfigurability of the passive robot are derived from the model. The achievable accuracy of the optimized robot configurations is first estimated with the help of a Monte Carlo simulation approach and finally evaluated in drilling experiments using synthetic temporal bone specimen.

Results

Experimental results demonstrate that the bone-attached mechanism exhibits a mean targeting accuracy of \((0.36\pm 0.12)\) mm under realistic conditions. A systematic targeting error is observed, which indicates that accurate identification of the passive robot’s kinematic parameters could further reduce deviations from planned drill trajectories.

Conclusion

The accuracy of the proposed mechanism demonstrates its suitability for minimally invasive cochlear implantation. Future work will focus on further evaluation experiments on temporal bone specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balachandran R, Mitchell JE, Blachon G, Noble JH, Dawant BM, Fitzpatrick JM, Labadie RF (2010) Percutaneous cochlear implant drilling via customized frames: an in vitro study. Otolaryngol Head Neck Surg 142(3):421–426. doi:10.1016/j.otohns.2009.11.029

    Article  PubMed Central  PubMed  Google Scholar 

  2. Baron S, Eilers H, Munske B, Toennies JL, Balachandran R, Labadie RF, Ortmaier T, Webster RJ (2010) Percutaneous inner-ear access via an image-guided industrial robot system. Proc Inst Mech Eng Part H J Eng Med 224(5):633–649. doi:10.1243/09544119JEIM781

    Article  CAS  Google Scholar 

  3. Bell B, Gerber N, Williamson T, Gavaghan K, Wimmer W, Caversaccio M, Weber S (2013) In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otol Neurotol 34(7):1284–1290. doi:10.1097/MAO.0b013e31829561b6

    Article  PubMed  Google Scholar 

  4. Bell B, Stieger C, Gerber N, Arnold A, Nauer C, Hamacher V, Kompis M, Nolte L, Caversaccio M, Weber S (2012) A self-developed and constructed robot for minimally invasive cochlear implantation. Acta Oto-Laryngol 132(4):355–360. doi:10.3109/00016489.2011.642813

    Article  Google Scholar 

  5. Eilers H, Baron S, Ortmaier T, Heimann B, Baier C, Rau TS, Leinung M, Majdani O (2009) Navigated, robot assisted drilling of a minimally invasive cochlear access. In: Proceedings of the 2009 IEEE international conference on mechatronics. IEEE, Mlaga, Spain. doi:10.1109/ICMECH.2009.4957213

  6. Fitzpatrick J, West J, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702. doi:10.1109/42.736021

    Article  CAS  PubMed  Google Scholar 

  7. Fitzpatrick JM (2009) Fiducial registration error and target registration error are uncorrelated. In: Proceedings of the SPIE 7261, medical imaging, pp 726, 102–726, 102–112

  8. Gosselin CM, Angeles J (1990) Singularity analysis of closed-loop kinematic chains. IEEE Trans Robot Autom 6(3):281–290

    Article  Google Scholar 

  9. Kobler JP, Díaz Díaz J, Fitzpatrick JM, Lexow GJ, Majdani O, Ortmaier T (2014) Localization accuracy of sphere fiducials in computed tomography images. In: Proceedings of the SPIE 9036, medical imaging 2014: image-guided procedures, robotic interventions, and modeling, vol 9036. doi:10.1117/12.2043472

  10. Kobler JP, Kotlarski J, Lexow GJ, Majdani O, Ortmaier T (2014) Design optimization of a bone-attached, redundant and reconfigurable parallel kinematic device for skull surgery. In: Proceedings of the 2014 IEEE international conference on robotics and automation (ICRA), pp 2364–2371. doi:10.1109/ICRA.2014.6907187

  11. Kobler JP, Kotlarski J, Öltjen J, Baron S, Ortmaier T (2012) Design and analysis of a head-mounted parallel kinematic device for skull surgery. Int J CARS 7(1):137–149. doi:10.1007/s11548-011-0619-8

    Article  Google Scholar 

  12. Kobler JP, Prielozny L, Lexow GJ, Rau TS, Majdani O, Ortmaier T (2015) Mechanical characterization of bone anchors used with a bone-attached, parallel robot for skull surgery. Med Eng Phys 37(5):460–468. doi:10.1016/j.medengphy.2015.02.012

    Article  PubMed  Google Scholar 

  13. Kobler JP, Schoppe M, Lexow GJ, Rau TS, Majdani O, Kahrs LA, Ortmaier T (2014) Temporal bone borehole accuracy for cochlear implantation influenced by drilling strategy: an in vitro study. Int J Comput Assist Radiol Surg 9(6):1033–1043. doi:10.1007/s11548-014-0997-9

    Article  Google Scholar 

  14. Kobler JP, Wall S, Lexow GJ, Lang CP, Majdani O, Kahrs LA, Ortmaier T (2015) An experimental evaluation of loads occurring during guided drilling for cochlear implantation. Int J Comput Assist Radiol Surg. doi:10.1007/s11548-015-1153-x

  15. Kratchman LB, Blachon GS, Withrow TJ, Balachandran R, Labadie RF, Webster RJ (2011) Design of a bone-attached parallel robot for percutaneous cochlear implantation. IEEE Trans Biomed Eng 58(10):2904–2910. doi:10.1109/TBME.2011.2162512

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kratchman LB, Fitzpatrick JM (2013) Robotically-adjustable microstereotactic frames for image-guided neurosurgery. In: Medical imaging 2013: image-guided procedures, robotic interventions, and modeling, vol 8671, p 86711U. doi:10.1117/12.2008172

  17. Kumar V (1992) Algorithms for constraint-satisfaction problems: a survey. AI Mag 13(1):32–44

    Google Scholar 

  18. Labadie RF, Balachandran R, Mitchell J, Noble JH, Majdani O, Haynes D, Bennett M, Dawant BM, Fitzpatrick JM (2010) Clinical validation study of percutaneous cochlear access using patient-customized microstereotactic frames. Otol Neurotol 31(1):94. doi:10.1097/MAO.0b013e3181c2f81a

    Article  PubMed Central  PubMed  Google Scholar 

  19. Labadie RF, Balachandran R, Noble JH, Blachon GS, Mitchell JE, Reda FA, Dawant BM, Fitzpatrick JM (2014) Minimally-invasive, image-guided cochlear implantation surgery: first report of clinical implementation. The Laryngoscope 124(8):1915–1922. doi:10.1002/lary.24520

    Article  PubMed Central  PubMed  Google Scholar 

  20. Majdani O, Rau T, Baron S, Eilers H, Baier C, Heimann B, Ortmaier T, Bartling S, Lenarz T, Leinung M (2009) A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J CARS 4:475–486. doi:10.1007/s11548-009-0360-8

    Article  Google Scholar 

  21. McRackan TR, Balachandran R, Blachon GS, Mitchell JE, Noble JH, Wright CG, Fitzpatrick JM, Dawant BM, Labadie RF (2013) Validation of minimally invasive, image-guided cochlear implantation using advanced bionics, cochlear, and medel electrodes in a cadaver model. Int J CARS 8(6):989–995. doi:10.1007/s11548-013-0842-6

    Article  Google Scholar 

  22. Merlet JP (1994) Determination of the workspace of a parallel manipulator for a fixed orientation. Mech Mach Theory 29(8):1099–1113. doi:10.1016/0094-114X(94)90002-7

    Article  Google Scholar 

  23. Merlet JP (2006) Computing the worst case accuracy of a PKM over a workspace or a trajectory. In: Proceedings of the 5th chemnitz parallel kinematics seminar, pp 83–96

  24. Merlet JP (2006) Parallel robots, 2nd edn. Springer, Dordrecht

    Google Scholar 

  25. Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York

  26. Patel AJ, Ehmann KF (1997) Volumetric error analysis of a Stewart platform-based machine tool. CIRP Ann Manuf Technol 46(1):287–290. doi:10.1016/S0007-8506(07)60827-0

    Article  Google Scholar 

  27. Raghavan M (1993) The stewart platform of general geometry has 40 configurations. J Mech Des 115(2):277–282

    Article  Google Scholar 

  28. Rau TS, Kluge M, Prielozny L, Kobler JP, Lenarz T, Majdani O (2013) Auf dem Weg zur klinischen Anwendung: Eine Weiterentwicklung des automatisierten Insertionstools für Cochlea-Implantate. In: Tagungsband der 12. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V. (CURAC). Freysinger, W, pp 41–45

  29. Ropponen T, Arai T (1995) Accuracy analysis of a modified stewart platform manipulator. Proc IEEE Int Conf Robot Autom 1:521–525. doi:10.1109/ROBOT.1995.525336

    Google Scholar 

  30. Ryu J, Cha J (2003) Volumetric error analysis and architecture optimization for accuracy of hexaslide type parallel manipulators. Mech Mach Theory 38(3):227–240. doi:10.1016/S0094-114X(02)00126-X

    Article  Google Scholar 

  31. Schipper J, Aschendorff A, Arapakis I, Klenzner T, Teszler CB, Ridder GJ, Laszig R (2004) Navigation as a quality management tool in cochlear implant surgery. J Laryngol Otol 118:764–770. doi:10.1258/0022215042450643

    PubMed  Google Scholar 

  32. Warren FM, Balachandran R, Fitzpatrick JM, Labadie RF (2007) Percutaneous cochlear access using bone-mounted, customized drill guides: demonstration of concept in vitro. Otol Neurotol 28(3):325–329. doi:10.1097/01.mao.0000253287.86737.2e

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation (DFG). The project numbers are OR 196/10-1 and MA 4038/6-1. Responsibility for the contents of this publication lies with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Philipp Kobler.

Ethics declarations

Conflict of interest

Jan-Philipp Kobler, Kathrin Nuelle, G. Jakob Lexow, Thomas S. Rau, Omid Majdani, Lueder A. Kahrs, Jens Kotlarski, and Tobias Ortmaier declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobler, JP., Nuelle, K., Lexow, G.J. et al. Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery. Int J CARS 11, 421–436 (2016). https://doi.org/10.1007/s11548-015-1300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1300-4

Keywords

Navigation