Skip to main content

Advertisement

Log in

Implementation and use of 3D pairwise geodesic distance fields for seeding abdominal aortic vessels

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Precise extraction of aorta and the vessels departing from it (i.e. coeliac, renal, and iliac) is vital for correct positioning of a graft prior to abdominal aortic surgery. To perform this task, most of the segmentation algorithms rely on seed points, and better-located seed points provide better initial positions for cross-sectional methods. Under non-optimal acquisition characteristics of daily clinical routine and complex morphology of these vessels, inserting seed points to all these small, but critically important vessels is a tedious, time-consuming, and error-prone task. Thus, in this paper, a novel strategy is developed to generate pathways between user-inserted seed points in order to initialize segmentation methods effectively.

Method

The proposed method requires only a single user-inserted seed for each vessel of interest for initializations. Starting from these initial seeds, it automatically generates pathways that span all vessels in between. To accomplish this, first, a geodesic mask is generated by adaptive thresholding, which reinforces the initial seeds to be kept in the vascular tree. Then, a novel implementation of 3D pairwise geodesic distance field (3D-PGDF) is utilized. It is shown that the minimal-valued geodesic of 3D-PGDF successfully defines a path linking the initial seeds as being the shortest geodesic. Moreover, the robustness of the minimum level set of the 3D-PGDF to local variations and regions of high curvature is increased by a region classification strategy, which adds partial geodesics to these critical regions.

Results

The proposed method was applied to 19 challenging CT data sets obtained from four different scanners and compared to two benchmark methods. The first method is a high-precision technique with very long processing time (subvoxel precise multi-stencil fast marching—MSFM), while the second is a very fast method with lower accuracy (3D fast marching). The results, which are obtained using various measures, show that the pathways generated by the developed technique enable significantly higher segmentation performance than 3D fast marching and require much less computational power and time than MSFM.

Conclusion

The developed technique offers a useful tool for generating pathways between seed points with minimal user interaction. It guarantees to include all important vessels in a computationally effective manner and thus, it can be used to initialize segmentation methods for abdominal aortic tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kirbas C, Quek F (2004) A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2):81–121. doi:10.1145/1031120.1031121

    Article  Google Scholar 

  2. Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6):819–845. doi:10.1016/j.media.2009.07.011

    Article  PubMed  Google Scholar 

  3. Parr A, Jayaratne C, Buttner P, Golledge J (2011) Comparison of volume and diameter measurement in assessing small abdominal aortic aneurysm expansion examined using computed tomographic angiography. Eur J Radiol 79(1):42–47. doi:10.1016/j.ejrad.2009.12.018

    Article  PubMed  Google Scholar 

  4. Auer M, Gasser TC (2010) Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans Med Imaging 29(4):1022–1028. doi:10.1109/TMI.2009.2039579

    Article  CAS  PubMed  Google Scholar 

  5. Lee K, Johnson RK, Yin Y, Wahle A, Olszewski ME, Scholz TD, Sonka M (2010) Three-dimensional thrombus segmentation in abdominal aortic aneurysms using graph search based on a triangular mesh. Comput Biol Med 40(3):271–278. doi:10.1016/j.compbiomed.2009.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bodur O, Grady L (2007) Semi-automatic aortic aneurysm analysis. Med Imaging 2007 Physiol Funct Struct Med Images 6511:65 111G–65 111G. doi:10.1117/12.710719

    Article  Google Scholar 

  7. Olabarriaga SD, Rouet J-M, Fradkin M, Breeuwer M, Niessen WJ (2005) Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling. IEEE Trans Med Imaging 24(4):477–485. doi:10.1109/TMI.2004.843260

    Article  PubMed  Google Scholar 

  8. Olabarriaga SD, Breeuwer M, Niessen WJ (2004) Segmentation of abdominal aortic aneurysms with a non-parametric appearance model. In: Series lecture notes in computer science, vol 3117. Springer, Berlin, pp 257–268

  9. de Bruijne M, van Ginneken B, Viergever MA, Niessen WJ (2004) Interactive segmentation of abdominal aortic aneurysms in CTA images. Med Image Anal 8(2):127–138. doi:10.1016/j.media.2004.01.001

    Article  PubMed  Google Scholar 

  10. Zhuge F, Rubin GD, Sun S, Napel S (2006) An abdominal aortic aneurysm segmentation method: level set with region and statistical information. Med Phys 33(5):1440. doi:10.1118/1.2193247

    Article  PubMed  Google Scholar 

  11. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647. doi:10.1109/34.295913

    Article  Google Scholar 

  12. Oda M, Kagajo M, Yamamoto T, Yoshino Y, Mori K (2015) Size-by-size iterative segmentation method of blood vessels from ct volumes and its application method of blood vessels from CT volumes and its application to renal vasculature. Int J Comput Assist Radiol Surg 10(1):208–210. doi:10.1007/s11548-015-1213-2

    Google Scholar 

  13. Xie Y, Padgett J, Biancardi A, Reeves A (2014) Automated aorta segmentation in low-dose chest CT images. Int J Comput Assist Radiol Surg 9(2):211–219. doi:10.1007/s11548-013-0924-5

    Article  PubMed  Google Scholar 

  14. Deschamps T, Cohen LD (2001) Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med Image Anal 5(4):281–299. doi:10.1016/S1361-8415(01)00046-9

    Article  CAS  PubMed  Google Scholar 

  15. Larralde A, Boldak C, Garreau M, Toumoulin C, Boulmier D, Rolland Y (2003) Evaluation of a 3D segmentation software for the coronary characterization in multi-slice computed tomography. In: Proceedings of the 2nd international conference on functional imaging and modeling of the heart. Springer, Berlin, pp 39–51. ISBN 3-540-40262-4

  16. Tyrrell JA, di Tomaso E, Fuja D, Tong R, Kozak K, Jain RK, Roysam B (2007) Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Trans Med Imaging 26(2):223–237. doi:10.1109/TMI.2006.889722

    Article  PubMed  Google Scholar 

  17. Flasque N, Desvignes M, Constans JM, Revenu M (2001) Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Med Image Anal 5(3):173–183. doi:10.1016/S1361-8415(01)00038-X

    Article  CAS  PubMed  Google Scholar 

  18. Wörz S, Rohr K (2007) Cramér-Rao bounds for estimating the position and width of 3D tubular structures and analysis of thin structures with application to vascular images. J Math Imaging Vis 30(2):167–180. doi:10.1007/s10851-007-0041-6

    Article  Google Scholar 

  19. Carrillo JF, Hernández M, Hoyos E, Dávila E, Orkisz M (2007) Recursive tracking of vascular tree axes in 3D medical images. Int J Comput Assist Radiol Surg 1(6):331–339. doi:10.1007/s11548-007-0068-6

    Article  Google Scholar 

  20. Wesarg S, Firle EA (2004) Segmentation of vessels: the corkscrew algorithm. In: Medical imaging 2004: image processing, pp 1609–1620. doi:10.1117/12.535125

  21. Friman O, Hindennach M, Peitgen H-O (May 2008) Template-based multiple hypotheses tracking of small vessels. In: 2008 5th IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 1047–1050. doi:10.1109/ISBI.2008.4541179

  22. Dijkstra EW (1959) Communication with an automatic computer. Ph.D. dissertation, University of Amsterdam

  23. Gülsün MA, Tek H (2008) Robust vessel tree modeling. Int Conf Med Image Comput Comput Assist Interv 11(Pt 1):602–611. doi:10.1007/978-3-540-85988-8_72

  24. Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118(2):269–277. doi:10.1006/jcph.1995.1098

    Article  Google Scholar 

  25. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4):1591–1595. doi:10.1073/pnas.93.4.1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsitsiklis J (1995) Efficient algorithms for globally optimal trajectories. IEEE Trans Autom Control 40(9):1528–1538. doi:10.1109/9.412624

    Article  Google Scholar 

  27. Van Uitert R, Bitter I (2007) Subvoxel precise skeletons of volumetric data based on fast marching methods. Med Phys 34(2):627–638. doi:10.1118/1.2409238

    Article  PubMed  Google Scholar 

  28. Kimmel R, Amir A, Bruckstein A (1995) Finding shortest paths on surfaces using level sets propagation. Pattern Anal Mach Intell IEEE Trans 17(6):635–640. doi:10.1109/34.387512

    Article  Google Scholar 

  29. Kang D-G, Suh DC, Ra JB (2009) Three-dimensional blood vessel quantification via centerline deformation. IEEE Trans Med Imaging 28(3):405-14. doi:10.1109/TMI.2008.2004651

    PubMed  Google Scholar 

  30. Peyre G (2004) Toolbox fast marching. http://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching

  31. Kroon D-J (2009) Accurate fast marching. http://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching

  32. Hassouna M, Farag A (2007) Multistencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains. Pattern Anal Mach Intell IEEE Trans 29(9):1563–1574. doi:10.1109/TPAMI.2007.1154

    Article  Google Scholar 

  33. Soille P (1994) Generalized geodesy via geodesic time. Pattern Recogn Lett 15(12):1235–1240. doi:10.1016/0167-8655(94)90113-9

    Article  Google Scholar 

  34. Papamarkos N, Gatos B (1994) A new approach for multilevel threshold selection. CVGIP Graph Models Image Process 56(5):357–370. doi:10.1006/cgip.1994.1033

    Article  Google Scholar 

  35. Papamarkos N (1989) A program for the optimum approximation of real rational functions via linear programming. Adv Eng Softw 1978 11(1):37–48. doi:10.1016/0141-1195(89)90034-X

    Google Scholar 

  36. Press W H, Flannery B P, Teukolsky S A (1986) Numerical recipes. The art of scientific computing, vol 1. University Press, Cambridge

    Google Scholar 

  37. Lam L, Lee S-W, Suen C (1992) Thinning methodologies—a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14(9):869–885. doi:10.1109/34.161346

  38. Lee T, Kashyap R, Chu C (1994) Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph Models Image Process 56(6):462–478. doi:10.1006/cgip.1994.1042

    Article  Google Scholar 

  39. Ibanez L, Schroeder W, Ng L, Cates J (2003) The ITK software guide. http://www.itk.org/Doxygen/html/classitk_1_1BinaryThinningImageFilter.html

  40. Bærentzen JA (2001) On the implementation of fast marching methods for 3D lattices (technical report). Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby. http://www2.imm.dtu.dk/pubdb/p.php?841

  41. Heimann T, van Ginneken B, Styner M, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman P, Chi Y, Cordova A, Dawant B, Fidrich M, Furst J, Furukawa D, Grenacher L, Hornegger J, Kainmuller D, Kitney R, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer H-P, Nemeth G, Raicu D, Rau A-M, van Rikxoort E, Rousson M, Rusko L, Saddi K, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite J, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. Med Imaging IEEE Trans 28(8):1251–1265. doi:10.1109/TMI.2009.2013851

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alper Selver.

Ethics declarations

Conflict of interest

Hereby, the authors of this manuscript, M. Alper SELVER and A. Emre KAVUR claim that there are no financial and personal relationships with other people or organizations that could inappropriately influence (bias) this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 16973 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selver, M.A., Kavur, A.E. Implementation and use of 3D pairwise geodesic distance fields for seeding abdominal aortic vessels. Int J CARS 11, 803–816 (2016). https://doi.org/10.1007/s11548-015-1321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1321-z

Keywords

Navigation