Skip to main content
Log in

Translatory hip kinematics measured with optoelectronic surgical navigation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

An optoelectronic surgical navigation system was used to detect small but measurable translational motion of human hip cadavers in high-range passive motions. Kinematic data were also examined to demonstrate the role of soft tissues in constraining hip translation.

Methods

Twelve cadaver hips were scanned using CT, instrumented for navigation, and passively taken through motion assessment. Center of the femoral head was tracked in the acetabular coordinates. Maximum non-impinging translation of the femoral head for each specimen hip was reported. This was repeated for 5 tissue states: whole, exposed to the capsule, partially or fully incised capsule, resection of the ligamentum teres and labrectomy. Femoral motions were compared to the reported value for ideal ball and socket model.

Results

Whole and exposed hips underwent maximal translations of \(3.9\pm 2.3\) and \(3.1\pm 1.2\) mm, respectively. These translational motions were statistically significantly different from reported value for a purely spherical joint, \(p=0.0005\). Further tissue removal almost always significantly increased maximum non-impingement translational motion with \(p<0.05\).

Conclusion

We found subtle but definite translations in every cadaver hip. There was no consistent pattern of translation. It is possible to use the surgical navigation systems for the assessment of human hip kinematics intra-operatively and improve the treatment of total hip arthroplasty patients by the knowledge of the fact that their hips translate. Better procedure selection and implantation optimization may arise from improved understanding of the motion of this critically important human joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Afoke N, Byers P, Hutton W (1987) Contact pressures in the human hip joint. J Bone Jt Surg Br 69–B(4):536–541

    Google Scholar 

  2. Akiyama K, Sakai T, Koyanagi J, Yoshikawa H, Sugamoto K (2011) Evaluation of translation in the normal and dysplastic hip using three-dimensional magnetic resonance imaging and voxel-based registration. Osteoarthr Cartil 19(6):700–710

    Article  CAS  PubMed  Google Scholar 

  3. Bedi A, Galano G, Walsh C, Kelly BT (2011) Capsular management during hip arthroscopy: from femoroacetabular impingement to instability. Arthroscopy 27(12):1720–1731

    Article  PubMed  Google Scholar 

  4. Bullough P, Goodfellow J, Greenwald AS, O’Connor J (1968) Incongruent surfaces in the human hip joint. Nature 217(5135):1290

    Article  CAS  PubMed  Google Scholar 

  5. Byrd JT, Jones KS (2004) Traumatic rupture of the ligamentum teres as a source of hip pain. Arthroscopy 20(4):385–391

    Article  PubMed  Google Scholar 

  6. Casino D, Zaffagnini S, Martelli S, Lopomo N, Bignozzi S, Iacono F, Russo A, Marcacci M (2009) Intraoperative evaluation of total knee replacement: kinematic assessment with a navigation system. Knee Surg Sports Traumatol Arthrosc 17(4):369–373

    Article  PubMed  Google Scholar 

  7. Cereatti A, Margheritini F, Donati M, Cappozzo A (2010) Is the human acetabulofemoral joint spherical? J Bone Jt Surg Br 92(2):311–314

    Article  CAS  Google Scholar 

  8. Cerveri P, Manzotti A, Baroni G (2014) Patient-specific acetabular shape modelling: comparison among sphere, ellipsoid and conchoid parameterisations. Comput Methods Biomech Biomed Eng 17(5):560–567

    Article  Google Scholar 

  9. Crawford MJ, Dy CJ, Alexander JW, Thompson M, Schroder SJ, Vega CE, Patel RV, Miller AR, McCarthy JC, Lowe WR, Noble PC (2007) The 2007 Frank Stinchfield Award: the biomechanics of the hip labrum and the stability of the hip. Clin Orthop Relat Res 465:16–22

    PubMed  Google Scholar 

  10. Della Croce U, Leardini A, Chiari L, Cappozzo A (2005) Human movement analysis using stereophotogrammetry, part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21(2):226–237

    Article  PubMed  Google Scholar 

  11. Delp SL, Stulberg DS, Davies B, Picard F, Leitner F (1998) Computer assisted knee replacement. Clin Orthop Relat Res 354:49–56

    Article  Google Scholar 

  12. De Momi E, Lopomo N, Cerveri P, Zaffagnini S, Safran MR, Ferrigno G (2009) In-vitro experimental assessment of a new robust algorithm for hip joint centre estimation. J Biomech 42(8):985–989

    Google Scholar 

  13. Ellis R, Rasquinha B, Wood G, Rudan J (2010) 3D shape analysis of arthritic hips: a preliminary study. Int J Comput Assist Radiol Surg 5:S140–S141

    Google Scholar 

  14. Epstein DM, Rose DJ, Philippon MJ (2010) Arthroscopic management of recurrent low-energy anterior hip dislocation in a dancer: a case report and review of literature. Am J Sports Med 38(6):1250–1254

    Article  PubMed  Google Scholar 

  15. Ferguson SJ, Bryant JT, Ganz R, Ito K (2000) The acetabular labrum seal: a poroelastic finite element model. Clin Biomech 15(6):463–468

    Article  CAS  Google Scholar 

  16. Ferguson SJ, Bryant JT, Ganz R, Ito K (2003) An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech 36(2):171–178

    Article  CAS  PubMed  Google Scholar 

  17. Field RE, Rajakulendran K (2011) The labro-acetabular complex. J Bone Jt Surg Am 93(Supplement 2):22–27

    Article  Google Scholar 

  18. Ganz R, Gill T, Gautier E, Ganz K, Krügel N, Berlemann U (2001) Surgical dislocation of the adult hip a technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. J Bone Jt Surg Br 83(8):1119–1124

    Article  CAS  Google Scholar 

  19. Gilles B, Christophe FK, Magnenat-Thalmann N, Becker CD, Duc SR, Menetrey J, Hoffmeyer P (2009) MRI-based assessment of hip joint translations. J Biomech 42(9):1201–1205

    Article  PubMed  Google Scholar 

  20. Greenwald AS, O’Connor JJ (1971) The transmission of load through the human hip joint. J Biomech 4(6):507–528

    Article  CAS  PubMed  Google Scholar 

  21. Gu D, Chen Y, Dai K, Zhang S, Yuan J (2008) The shape of the acetabular cartilage surface: a geometric morphometric study using three-dimensional scanning. Med Eng Phys 30(8):1024–1031

    Article  PubMed  Google Scholar 

  22. Guanche CA, Bare AA (2006) Arthroscopic treatment of femoroacetabular impingement. Arthroscopy 22(1):95–106

    Article  PubMed  Google Scholar 

  23. Hammond B, Charnley J (1967) The sphericity of the femoral head. Med Biol Eng 5(5):445–453

    Article  CAS  PubMed  Google Scholar 

  24. Harding L, Barbe M, Shepard K, Marks A, Ajai R, Lardiere J, Sweringa H (2003) Posterior-anterior glide of the femoral head in the acetabulum: a cadaver study. J Orthop Sports Phys Ther 33(3):118–125

    Article  PubMed  Google Scholar 

  25. Ito H, Song Y, Lindsey DP, Safran MR, Giori NJ (2009) The proximal hip joint capsule and the zona orbicularis contribute to hip joint stability in distraction. J Orthop Res 27(8):989–995

    Article  PubMed  Google Scholar 

  26. Kainz H, Carty CP, Modenese L, Boyd RN, Lloyd DG (2015) Estimation of the hip joint centre in human motion analysis: a systematic review. Clin Biomech 30:319–329

    Article  Google Scholar 

  27. Kalisvaart MM, Safran MR (2015) Microinstability of the hip—it does exist etiology, diagnosis and treatment. J Hip Preserv Surg 2(2):123–135

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kang MJ, Sadri H, Stern R, Magnenat-Thalmann N, Hoffmeyer P, Ji H (2011) Determining the location of hip joint center: application of a conchoid’s shape to the acetabular cartilage surface of magnetic resonance images. Comput Methods Biomech Biomed Eng 14(01):65–71

    Article  CAS  Google Scholar 

  29. Kashiwagi N, Suzuki S, Seto Y (2001) Arthroscopic treatment for traumatic hip dislocation with avulsion fracture of the ligamentum teres. Arthroscopy 17(1):67–69

    Article  CAS  PubMed  Google Scholar 

  30. Kelly BT, Williams RJ, Philippon MJ (2003) Hip arthroscopy: current indications, treatment options, and management issues. Am J Sports Med 31(6):1020–1037

    Article  PubMed  Google Scholar 

  31. Kelly BT, Weiland DE, Schenker ML, Philippon MJ (2005) Arthroscopic labral repair in the hip: surgical technique and review of the literature. Arthroscopy 21(12):1496–1504

    Article  PubMed  Google Scholar 

  32. Kendoff D, Citak M, Voos J, Pearle AD (2009) Surgical navigation in knee ligament reconstruction. Clin Sports Med 28(1):41–50

    Article  CAS  PubMed  Google Scholar 

  33. Kinzel G, Hillberry B, Hall A, Van Sickle D, Harvey W (1972) Measurement of the total motion between two body segments—II description of application. J Biomech 5(3):283–293

    Article  CAS  PubMed  Google Scholar 

  34. Lafortune MA, Cavanagh PR, Sommer HJ III, Kalenak A (1992) Three-dimensional kinematics of the human knee during walking. J Biomech 25(4):347–357

    Article  CAS  PubMed  Google Scholar 

  35. Laine T, Schlenzka D, Mäkitalo K, Tallroth K, Nolte LP, Visarius H (1997) Improved accuracy of pedicle screw insertion with computer-assisted surgery: a prospective clinical trial of 30 patients. Spine 22(11):1254–1258

    Article  CAS  PubMed  Google Scholar 

  36. Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry, part 3: soft tissue artifact assessment and compensation. Gait Posture 21(2):212–225

    Article  PubMed  Google Scholar 

  37. Leenders T, Vandevelde D, Mahieu G, Nuyts R (2002) Reduction in variability of acetabular cup abduction using computer assisted surgery: a prospective and randomized study. Comput Aided Surg 7(2):99–106

    Article  CAS  PubMed  Google Scholar 

  38. Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28(2):164–169

    PubMed  Google Scholar 

  39. Ma B, Ellis RE (2003) Robust registration for computer-integrated orthopedic surgery: laboratory validation and clinical experience. Med Image Anal 7(3):237–250

    Article  CAS  PubMed  Google Scholar 

  40. Manzotti A, Cerveri P, De Momi E, Pullen C, Confalonieri N (2011) Does computer-assisted surgery benefit leg length restoration in total hip replacement? Navigation versus conventional freehand. Int Orthop 35(1):19–24

    Article  PubMed  Google Scholar 

  41. Menschik F (1997) The hip joint as a conchoid shape. J Biomech 30(9):971–973

    Article  CAS  PubMed  Google Scholar 

  42. Merloz P, Huberson C, Tonetti J, Eid A, Vouaillat H (2003) Computer-assisted pedicle screw insertion. Tech Orthop 18(2):149–159

    Article  Google Scholar 

  43. Mihalko WM, Whiteside LA, Krackow KA (2003) Comparison of ligament-balancing techniques during total knee arthroplasty. J Bone Jt Surg Am 85(Suppl 4):132–135

    Article  Google Scholar 

  44. Norkin CC, White DJ (2009) Measurement of joint motion: a guide to goniometry. FA Davis, Philadelphia, PA

    Google Scholar 

  45. Philippon MJ, Schenker ML (2005) Athletic hip injuries and capsular laxity. Oper Tech Orthop 15(3):261–266

    Article  Google Scholar 

  46. Rasquinha BJ, Rudan JF, Wood GC, Ellis RE (2013) Aspherical morphology of the osteoarthritic hip: two arthritic pathologies. Int J Comput Assist Radiol Surg 8(Suppl 1):S377–S378

    Google Scholar 

  47. Rydell N (1973) Biomechanics of the hip-joint. Clin Orthop Relat Res 92:6–15

    Article  Google Scholar 

  48. Sadeghi H, Allard P, Prince F, Labelle H (2000) Symmetry and limb dominance in able-bodied gait: a review. Gait Posture 12(1):34–45

    Article  CAS  PubMed  Google Scholar 

  49. Safran MR, Lopomo N, Zaffagnini S, Signorelli C, Vaughn ZD, Lindsey DP, Gold G, Giordano G, Marcacci M (2013) In vitro analysis of peri-articular soft tissues passive constraining effect on hip kinematics and joint stability. Knee Surg Sports Traumatol Arthrosc 21(7):1655–1663

    Article  PubMed  Google Scholar 

  50. Scopp JM, Moorman CT (2002) Acute athletic trauma to the hip and pelvis. Orthop Clin North Am 33(3):555–563

    Article  PubMed  Google Scholar 

  51. Shu B, Safran MR (2011) Hip instability: anatomic and clinical considerations of traumatic and atraumatic instability. Clin Sports Med 30(2):349–367

    Article  PubMed  Google Scholar 

  52. Signorelli C, Lopomo N, Bonanzinga T, Muccioli GMM, Safran MR, Marcacci M, Zaffagnini S (2013) Relationship between femoroacetabular contact areas and hip position in the normal joint: an in vitro evaluation. Knee Surg Sports Traumatol Arthrosc 21(2):408–414

    Article  PubMed  Google Scholar 

  53. Smith EJ, Anstey JA, Venne G, Ellis RE (2013) Using additive manufacturing in accuracy evaluation of reconstructions from computed tomography. Proc Inst Mech Eng H 227(5):551–559

    Article  PubMed  Google Scholar 

  54. Smith MV, Costic RS, Allaire R, Schilling PL, Sekiya JK (2014) A biomechanical analysis of the soft tissue and osseous constraints of the hip joint. Knee Surg Sports Traumatol Arthrosc 22(4):946–952

    Article  PubMed  Google Scholar 

  55. Sparmann M, Wolke B, Czupalla H, Banzer D, Zink A (2003) Positioning of total knee arthroplasty with and without navigation support: a prospective ransomised study. J Bone Jt Surg Br 85(6):830–835

    CAS  Google Scholar 

  56. Tashman S, Anderst W (2003) In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J Biomech Eng 125(2):238–245

    Article  PubMed  Google Scholar 

  57. Taylor RH, Joskowicz L, Williamson B, Guéziec A, Kalvin A, Kazanzides P, van Vorhis R, Yao J, Kumar R, Bzostek A, Sahay A, Borner M, Lahmer A (1999) Computer-integrated revision total hip replacement surgery: concept and preliminary results. Med Image Anal 3(3):301–319

    Article  CAS  PubMed  Google Scholar 

  58. Van Arkel R, Amis A, Cobb J, Jeffers J (2015) The capsular ligaments provide more hip rotational restraint than the acetabular labrum and the ligamentum teres. Bone Jt J 97(4):484–491

    Article  Google Scholar 

  59. Walmsley T (1928) The articular mechanism of the diarthroses. Bone Jt Surg Am 10(1):40–45

    Google Scholar 

  60. Widmer KH, Grützner PA (2004) Joint replacement-total hip replacement with CT-based navigation. Injury 35(Suppl 1):S-A84–S-A89

    Article  Google Scholar 

  61. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima D, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35(4):543–548

  62. Xi J, Hu X, Jin Y (2003) Shape analysis and parameterized modeling of hip joint. J Comput Inf Sci Eng 3(3):260–265

    Article  Google Scholar 

  63. Zakani S, Smith EJ, Kunz M, Wood GC, Rudan JF, Ellis RE (2012a) Tracking translations in the human hip. In: ASME 2012 international mechanical engineering congress and exposition, ASME Proceedings, Houston, Texas, USA, November 2012. Biomedical and biotechnology, vol 2, pp 109–115

  64. Zakani S, Venne G, Smith EJ, Bicknell R, Ellis RE (2012b) Analyzing shoulder translation with navigation technology. Int J Comput Assist Radiol Surg 7(6):853–860

    Article  CAS  PubMed  Google Scholar 

  65. Zakani S, Venne G, Dickinson AW, Kunz M, Rudan JF, Ellis RE (2015) Identification of hip impingement from kinematic data: a cadaveric study. Int J Comput Assist Radiol Surg 10(Suppl 1):S261–S261

    Google Scholar 

  66. Zatsiorsky VM (1998) Kinematics of Human Motion. Human Kinetics Champaign, USA

Download references

Acknowledgements

We thank Joseph Anstey, Dr Manuela Kunz, Dr Erin Smith, Dr Gabriel Venne and Paul St. John, for their assistance in acquiring and preprocessing data used in this study. This work was supported in part by the Canadian Institutes of Health Research with Grant #CHRPJ-398995 and the Natural Sciences and Engineering Research Council of Canada with Grant #DG-43515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima Zakani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakani, S., Rudan, J.F. & Ellis, R.E. Translatory hip kinematics measured with optoelectronic surgical navigation. Int J CARS 12, 1411–1423 (2017). https://doi.org/10.1007/s11548-017-1629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1629-y

Keywords

Navigation