Skip to main content

Advertisement

Log in

A unified methodology based on sparse field level sets and boosting algorithms for false positives reduction in lung nodules detection

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

This work aims to develop a unified methodology for the false positives reduction in lung nodules computer-aided detection schemes.

Methods

The 3D region of each detected nodule candidate is first reconstructed using the sparse field method for accurately segmenting the objects. This technique enhances the level set modeling by restricting the computations to a narrow band near the evolving curve. Then, a set of 2D and 3D relevant features are extracted for each segmented candidate. Subsequently, a hybrid undersampling/boosting algorithm called RUSBoost is applied to analyze the features and discriminate real nodules from non-nodules.

Results

The performance of the proposed scheme was evaluated by using 70 CT images, randomly selected from the Lung Image Database Consortium and containing 198 nodules. Applying RUSBoost classifier exhibited a better performance than some commonly used classifiers. It effectively reduced the average number of FPs to only 3.9 per scan based on a fivefold cross-validation.

Conclusion

The practical implementation, applicability for different nodule types and adaptability in handling the imbalanced data classification insure the improvement in lung nodules detection by utilizing this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Austin JH, Muller NL, Friedman PJ, Hansell DM, Naidich DP, Remy-Jardin M, Webb WR, Zerhouni EA (1996) Glossary of terms for CT of the lungs: recommendations of the nomenclature committee of the Fleischner society. Radiology 200(2):327–331

    Article  CAS  PubMed  Google Scholar 

  2. Lee SLA, Kouzani AZ, Hu EJ (2012) Automated detection of lung nodules in computed tomography images: a review. Mach Vis Appl 23:151–163

    Article  Google Scholar 

  3. Suarez-Cuenca JJ, Tahoces PG, Souto M, Lado MJ, Remy-Jardin M, Remy J, Vidal JJ (2009) Application of the iris filter for automatic detection of pulmonary nodules on computed tomography images. Comput Biol Med 39:921–933

    Article  PubMed  Google Scholar 

  4. Saien S, Pilevar AH, Abrishami Moghaddam H (2014) Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels. Comput Biol Med 54:188–198

    Article  PubMed  Google Scholar 

  5. Choi W-J, Choi T-S (2014) Automated pulmonary nodule detection based on three dimensional shape-based feature descriptor. Comput Methods Programs Biomed 113:37–54

    Article  PubMed  Google Scholar 

  6. Ma Z, Tavares JM, Jorge RN, Mascarenhas T (2010) A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Comput Methods Biomech Biomed Eng 13(2):235–246

    Article  Google Scholar 

  7. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wileye, Hoboken

    Google Scholar 

  8. Javaid M, Javid M, Rehman MZU, Shah SIA (2016) A novel approach to CAD system for the detection of lung nodules in CT images. Comput Methods Programs Biomed 135:125–139

    Article  PubMed  Google Scholar 

  9. Ye X, Lin X, Dehmeshki J, Slabaugh G, Beddoe G (2009) Shape based computer aided detection of lung nodules in thoracic CT images. IEEE Trans Biomed Eng 56:1810–1820

    Article  PubMed  Google Scholar 

  10. Suzuki K, Armato III SG, Li F, Sone S, Doi K (2003) Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys 30(7):1602–1617

    Article  PubMed  Google Scholar 

  11. Golosio B, Masala GL, Piccioli A, Oliva P, Carpinelli M, Cataldo R, Cerello P, De Carlo F, Gargano G, Falaschi F, Fantacci ME, Kasae P, Torsello M (2009) A novel multi-threshold method for nodule detection in CT. Med Phys 36(8):3607–3618

    Article  PubMed  Google Scholar 

  12. Tan M, Deklerck R, Jansen B, Bister M, Cornelis J (2011) A novel computer-aided lung nodule detection system for CT images. Med Phys 38(10):5630–5645

    Article  PubMed  Google Scholar 

  13. Messay T, Hardie RC, Rogers SK (2010) A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med Image Anal 14(3):390–406

    Article  PubMed  Google Scholar 

  14. Murphy K, van Ginneken B, Schilham AMR, de Hoop BJ, Gietema HA, Prokop M (2009) A large scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal 13:757–770

    Article  CAS  PubMed  Google Scholar 

  15. Santos AM, de Carvalho Filho AO, Silva AC, de Paiva AC, Nunes RA, Gattass M (2014) Automatic detection of small lung nodules in 3D CT data using Gaussian mixture models, Tsallis entropy and SVM. Eng Appl Artif Intel 36:27–39

    Article  Google Scholar 

  16. Han H, Li L, Han F, Song B, Moore W, Liang Z (2015) Fast and adaptive detection of pulmonary nodules in thoracic CT images using a hierarchical vector quantization scheme. IEEE J Biomed Health Inform 19(2):648–659

    Article  PubMed  Google Scholar 

  17. Wu P, Xia K, Yu H (2016) Correlation coefficient based supervised locally linear embedding for pulmonary nodule recognition. Comput Methods Programs Biomed 136:97–106

    Article  PubMed  PubMed Central  Google Scholar 

  18. Papa JP, FalcãO AX, De Albuquerque VH, Tavares JM (2012) Efficient supervised optimum-path forest classification for large datasets. Pattern Recognit 45(1):512–520

    Article  Google Scholar 

  19. Rebouças Filho PP, Cortez PC, da Silva Barros AC, Albuquerque VH, Tavares JM (2017) Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images. Med Image Anal 35:503–516

    Article  PubMed  Google Scholar 

  20. Cao P, Yang J, Li W, Zhao D, Zaiane O (2014) Ensemble-based hybrid probabilistic sampling for imbalanced data learning in lung nodule CAD. Comput Med Imaging Graph 38(3):137–150

    Article  PubMed  Google Scholar 

  21. Bagci U, Bray M, Caban J, Yao J, Mollura DJ (2012) Computer-assisted detection of infectious lung diseases: a review. Comput Med Imaging Graph 36:72–84

    Article  PubMed  Google Scholar 

  22. Whitaker R (1998) A level-set approach to 3D reconstruction from range data. Int J Comput Vis 29(3):203–231

    Article  Google Scholar 

  23. Yang X, Gao X, Tao D, Li X, Li J (2015) An efficient MRF embedded level set method for image segmentation. IEEE Trans Image Process 24(1):9–21

    Article  CAS  PubMed  Google Scholar 

  24. Awad J, Wilson L, Parraga G, Fenster A (2011) Lung tumours segmentation on CT using sparse field active model. In: Proceedings of SPIE medical imaging computer-aided diagnosis vol 7963, p 79632Y

  25. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  CAS  PubMed  Google Scholar 

  26. Li Q, Sone S, Doi K (2003) Selective enhancement filters for nodules, vessels, and airway walls in two and three-dimensional CT scans. Med Phys 30(8):2040–2051

    Article  PubMed  Google Scholar 

  27. Theodoridis S, Koutroumbas K (2006) Pattern recognition, 3rd edn. Academic Press, London

    Google Scholar 

  28. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano J (2010) Rusboost: a hybrid approach to alleviating class imbalance. IEEE Trans Syst Man Cybern A, Syst Hum 40(1):185–197

    Article  Google Scholar 

  29. McNitt-Gray MF, Armato SG, Meyer CR, Reeves AP, McLennan G, Pais RC, Freymann J, Brown MS, Engelmann RM, Bland PH, Laderach GE, Piker C, Piker C, Guo J, Towfic Z, Qing DP, Yankelevitz DF, Aberle DR, van Beek EJ, MacMahon H, Kazerooni EA, Croft BY, Clarke LP (2007) The lung image database consortium (LIDC) data collection process for nodule detection and annotation. Acad Radiol 14:1464–1474

    Article  PubMed  PubMed Central  Google Scholar 

  30. Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Beek EJRV, Yankelevitz D, Biancardi AM, Bland PH, Brown MS, Engelmann RM, Laderach GE, Max D, Pais RC, Qing DPY, Roberts RY, Smith AR, Starkey A, Batrah P, Caligiuri P, Farooqi A, Gladish GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Casteele AV, Gupte S, Sallamm M, Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft BY (2011) The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38:915–931

    Article  PubMed  PubMed Central  Google Scholar 

  31. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  32. Campadelli P, Casiraghi E, Valentini G (2005) Support vector machines for candidate nodules classification. Neurocomputing 68:281–288

    Article  Google Scholar 

  33. Liu X-Y, Wu J, Zhou Z-H (2009) Exploratory undersampling for class imbalance learning. IEEE Trans Syst Man Cybern B Appl Rev 39(2):539–550

    Article  Google Scholar 

  34. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407

    Article  Google Scholar 

  35. Cao P, Liu X, Yang J, Zhao D, Li W, Huang M, Zaiane O (2017) A multi-kernel based framework for heterogeneous feature selection and over-sampling for computer-aided detection of pulmonary nodules. Pattern Recognit 64:327–346

    Article  Google Scholar 

  36. Jacobs C, van Rikxoort EM, Twellmann T, Scholten ET, de Jong PA, Kuhnigk JM, Oudkerk M, de Koning HJ, Prokop M, Schaefer-Prokop C, van Ginneken B (2014) Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Med Image Anal 18(2):374–384

    Article  PubMed  Google Scholar 

  37. Chang C, Lin C (2013) LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm/

  38. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern C Appl Rev 42(4):3358–3378

    Article  Google Scholar 

  39. Netto SM, Silva AC, Nunes RA, Gattass M (2012) Automatic segmentation of lung nodules with growing neural gas and support vector machine. Comput Biol Med 42(11):1110–21

    Article  Google Scholar 

  40. Pu J, Zheng B, Leader JK, Wang X-H, Gur D (2008) An automated CT based lung nodule detection scheme using geometric analysis of signed distance field. Med Phys 35(8):3453–3461

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li Q, Li F, Doi K (2008) Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier. Acad Radiol 15(2):165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Riccardi A, Petkov TS, Ferri G, Masotti M, Campanini R (2011) Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification. Med Phys 38(4):1962–1971

    Article  PubMed  Google Scholar 

  43. Camarlinghi N, Gori I, Retico A, Bellotti R, Bosco P, Cerello P, Gargano G, Lopez Torres E, Megna R, Peccarisi M, Fantacci M (2011) Combination of computer-aided detection algorithms for automatic lung nodule identification. Int J Comput Assist Radiol Surg 7:455–464

    Article  PubMed  Google Scholar 

  44. Keshani M, Azimifar Z, Tajeripour F, Boostani R (2013) Lung nodule segmentation and recognition using svm classifier and active contour modeling: a complete intelligent system. Comput Biol Med 43:287–300

    Article  PubMed  Google Scholar 

  45. Teramoto A, Fujita H (2013) Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. Int J Comput Assist Radiol Surg 8:193–205

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mahsa Fathian and Dr. Roya Fallahian for their clinical guidance and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soudeh Saien.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saien, S., Moghaddam, H.A. & Fathian, M. A unified methodology based on sparse field level sets and boosting algorithms for false positives reduction in lung nodules detection. Int J CARS 13, 397–409 (2018). https://doi.org/10.1007/s11548-017-1656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1656-8

Keywords

Navigation