Skip to main content

Advertisement

Log in

A simulator for advanced analysis of a 5-DOF EM tracking systems in use for image-guided surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To assess the accuracy of medical electromagnetic tracking systems, reference positioning systems are generally required. Errors are unavoidable in such systems, and despite how tiny they may be, prevent the ground truth from being known. In this work, a simulator was developed and used to analyze the theoretical system performances in electromagnetic tracking.

Methods

To simulate the entire tracking process, the magnetic dipole model, Faraday’s law, and a mathematical optimization algorithm are applied. With the simulator, we optimized the spatial placement of the transmitter coils, analyzed the tracking accuracy by applying stochastic and optimized coil placement. Additionally, the performance of the calibration of transmitter coils’ measurement error and Kalman filtering was tested.

Results

The results show that, after optimizing the spatial arrangement of the transmitter coils, the tracking accuracy is significantly improved to a much higher level compared with applying statistical arrangement. The measurement errors of the transmitter coils’ positions and orientations can be totally rectified by the developed calibration algorithm when no noises are introduced. The Kalman filter reduces the sensor jitter errors caused by noise, which potentially allows the EM tracking system to reach a larger volume of interest.

Conclusions

We proposed a simulator for advanced analysis in electromagnetic tracking without hardware requirements. Grounded on this, we performed an optimization of the spatial arrangement of the transmitter coils to improve the tracking accuracy further. The performances of the calibration algorithm and Kalman filtering were also evaluated. The developed simulator can also be applied for other analysis in electromagnetic tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://de.mathworks.com/help/gads/patternsearch.html.

References

  1. Loke WF, Choi TY, Maleki T, Papiez L, Ziaie B, Jung B (2010) Magnetic tracking system for radiation therapy. IEEE Trans Biomed Circuits Syst 4(4):223–231. doi:10.1109/TBCAS.2010.2046737

    Article  Google Scholar 

  2. Franz AM, März K, Hummel J, Birkfellner W, Bendl R, Delorme S, Schlemmer HP, Meinzer HP, Maier-Hein L (2012) Electromagnetic tracking for us-guided interventions: standardized assessment of a new compact field generator. Int J Comput Assist Radiol Surg 7(6):813–818. doi:10.1007/s11548-012-0740-3

    Article  CAS  PubMed  Google Scholar 

  3. Shahriari N, Hekman E, Oudkerk M, Misra S (2015) Design and evaluation of a computed tomography (ct)-compatible needle insertion device using an electromagnetic tracking system and ct images. Int J Comput Assist Radiol Surg 10(11):1845–1852. doi:10.1007/s11548-015-1176-3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L (2014) Electromagnetic tracking in medicine—a review of technology, validation, and applications. IEEE Trans Med Imaging 33(8):1702–1725. doi:10.1109/TMI.2014.2321777

    Article  PubMed  Google Scholar 

  5. Wood BJ, Zhang H, Durrani A, Glossop N, Ranjan S, Lindisch D, Levy E, Banovac F, Borgert J, Krueger S, Kruecker J, Viswanathan A, Cleary K (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16(4):493–505. doi:10.1097/01.RVI.0000148827.62296.B4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Krücker J, Xu S, Glossop N, Viswanathan A, Borgert J, Schulz H, Wood BJ (2007) Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol 18(9):1141–1150. doi:10.1016/j.jvir.2007.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yaniv Z, Wilson E, Lindisch D, Cleary K (2009) Electromagnetic tracking in the clinical environment. Med Phys 36(3):876–892. doi:10.1118/1.3075829

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hummel J, Figl M, Birkfellner W, Bax MR, Shahidi R, Maurer C Jr, Bergmann H (2006) Evaluation of a new electromagnetic tracking system using a standardized assessment protocol. Phys Med Biol 51(10):N205. doi:10.1088/0031-9155/51/10/N01

    Article  CAS  PubMed  Google Scholar 

  9. Bien T, Li M, Salah Z, Rose G (2014) Electromagnetic tracking system with reduced distortion using quadratic excitation. Int J Comput Assist Radiol Surg 9(2):323–332. doi:10.1007/s11548-013-0925-4

    Article  PubMed  Google Scholar 

  10. Bien T, Rose G (2012) Algorithm for calibration of the electromagnetic tracking system. In: 2012 IEEE-EMBS international conference on biomedical and health informatics (BHI), IEEE, pp 85–88. doi:10.1109/BHI.2012.6211512

  11. Fitzpatrick JM, West JB, Maurer CR (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702. doi:10.1109/42.736021

    Article  CAS  PubMed  Google Scholar 

  12. Frantz DD, Wiles A, Leis S, Kirsch S (2003) Accuracy assessment protocols for electromagnetic tracking systems. Phys Med Biol 48(14):2241

    Article  CAS  PubMed  Google Scholar 

  13. Nafis C, Jensen V, Beauregard L, Anderson P (2006) Method for estimating dynamic em tracking accuracy of surgical navigation tools. Proc SPIE Med Image 2006 Vis Image Guided Proc Display 6141:152–167. doi:10.1117/12.653448

    Google Scholar 

  14. Wilson E, Yaniv Z, Zhang H, Nafis C, Shen E, Shechter G, Wiles A, Peters T, Lindisch D, Cleary K (2007) A hardware and software protocol for the evaluation of electromagnetic tracker accuracy in the clinical environment: a multi-center study. Proc SPIE 6509:65092T. doi:10.1117/12.712701

    Article  Google Scholar 

  15. Koivukangas T, Katisko JP, Koivukangas JP (2013) Technical accuracy of optical and the electromagnetic tracking systems. SpringerPlus 2(1):90. doi:10.1186/2193-1801-2-90

    Article  PubMed  PubMed Central  Google Scholar 

  16. O’Donoghue K, Cantillon-Murphy P (2015) Planar magnetic shielding for use with electromagnetic tracking systems. IEEE Trans Magn 51(2):1–12. doi:10.1109/TMAG.2014.2352344

    Article  Google Scholar 

  17. Li M, Hansen C, Rose G (2015) A robust electromagnetic tracking system for clinical applications. In: Proceedings of the annual meeting of the German society of computer- and robot-assisted surgery, pp 31–36

  18. Wiles AD, Thompson DG, Frantz DD (2004) Accuracy assessment and interpretation for optical tracking systems. Proc SPIE 5367:421–432. doi:10.1117/12.536128

  19. Maier-Hein L, Franz A, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer HP (2012) Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys 39(6):3424–3434

    Article  CAS  PubMed  Google Scholar 

  20. Plotkin A, Shafrir O, Paperno E, Kaplan DM (2010) Magnetic eye tracking: a new approach employing a planar transmitter. IEEE Trans Biomed Eng 57(5):1209–1215. doi:10.1109/TBME.2009.2038495

    Article  PubMed  Google Scholar 

  21. O’Donoghue K, Eustace D, Griffiths J, O’Shea M, Power T, Mansfield H, Cantillon-Murphy P (2014) Catheter position tracking system using planar magnetics and closed loop current control. IEEE Trans Magn 50(7):1–9. doi:10.1109/TMAG.2014.2304271

    Article  Google Scholar 

  22. Raab FH, Blood EB, Steiner TO, Jones HR (1979) Magnetic position and orientation tracking system. IEEE Trans Aerosp Electron Syst AES 15(5):709–718. doi:10.1109/TAES.1979.308860

    Article  Google Scholar 

  23. Schneider M, Stevens C (2007) Development and testing of a new magnetic-tracking device for image guidance. In: Medical imaging, International society for optics and photonics, pp 65.090I–65.090I. doi:10.1117/12.713249

  24. Sherman JT, Lubkert JK, Popovic RS, DiSilvestro MR (2007) Characterization of a novel magnetic tracking system. IEEE Trans Magn 43(6):2725–2727. doi:10.1109/TMAG.2007.893314

    Article  Google Scholar 

  25. Stenger B, Mendonça PR, Cipolla R (2001) Model-based hand tracking using an unscented Kalman filter. BMVC 1:63–72. doi:10.5244/C.15.8

    Google Scholar 

  26. Bertozzi M, Broggi A, Fascioli A, Tibaldi A, Chapuis R, Chausse F (2004) Pedestrian localization and tracking system with Kalman filtering. In: Intelligent vehicles symposium, IEEE, pp 584–589. doi:10.1109/IVS.2004.1336449

  27. Schenderlein M, Rasche V, Dietmayer K (2011) Three-dimensional catheter tip tracking from asynchronous biplane X-ray image sequences using non-linear state filtering. In: Bildverarbeitung für die Medizin 2011, Springer, pp 234–238. doi:10.1007/978-3-642-19335-4_49

  28. Li M, Song S, Hu C, Chen D, Meng MQH (2010) A novel method of 6-dof electromagnetic navigation system for surgical robot. In: 2010 8th world congress on intelligent control and automation (WCICA), IEEE, pp 2163–2167. doi:10.1109/WCICA.2010.5554348

  29. Harris PG, Pendlebury J (2006) Dipole-field contributions to geometric-phase-induced false electric-dipole-moment signals for particles in traps. Phys Rev A 73(1):014101. doi:10.1103/PhysRevA.73.01410

    Article  Google Scholar 

  30. Li M, Hansen C, Rose G (2017) A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery. Int J Comput Assist Radiol Surg 2:1–13. doi:10.1007/s11548-017-1546-0

    Google Scholar 

  31. Aron M, Kerrien E, Berger MO, Laprie Y (2006) Coupling electromagnetic sensors and ultrasound images for tongue tracking: acquisition setup and preliminary results. In: 7th international seminar on speech production-ISSP’06, CEFALA-Centro de Estudos da Fala, Acústica, Linguagem e músicA

Download references

Acknowledgements

The work of this paper is partly funded by the Federal Ministry of Education and Research within the Forschungscampus STIMULATE under Grant number ‘13GW0095A’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengfei Li.

Ethics declarations

Conflict of interest

The authors Mengfei Li, Christian Hansen and Georg Rose declare that they have no conflict of interest.

Ethical approval

Not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Hansen, C. & Rose, G. A simulator for advanced analysis of a 5-DOF EM tracking systems in use for image-guided surgery. Int J CARS 12, 2217–2229 (2017). https://doi.org/10.1007/s11548-017-1662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1662-x

Keywords

Navigation