Skip to main content

Advertisement

Log in

Toward an automatic preoperative pipeline for image-guided temporal bone surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Minimally invasive surgery is often built upon a time-consuming preoperative step consisting of segmentation and trajectory planning. At the temporal bone, a complete automation of these two tasks might lead to faster interventions and more reproducible results, benefiting clinical workflow and patient health.

Methods

We propose an automatic segmentation and trajectory planning pipeline for image-guided interventions at the temporal bone. For segmentation, we use a shape regularized deep learning approach that is capable of automatically detecting even the cluttered tiny structures specific for this anatomy. We then perform trajectory planning for both linear and nonlinear interventions on these automatically segmented risk structures.

Results

We evaluate the usability of segmentation algorithms for planning access canals to the cochlea and the internal auditory canal on 24 CT data sets of real patients. Our new approach achieves similar results to the existing semiautomatic method in terms of Dice but provides more accurate organ shapes for the subsequent trajectory planning step. The source code of the algorithms is publicly available.

Conclusion

Automatic segmentation and trajectory planning for various clinical procedures at the temporal bone are feasible. The proposed automatic pipeline leads to an efficient and unbiased workflow for preoperative planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. https://github.com/MECLabTUDA/MUKNO.git, www.gris.tu-darmstadt.de/short/IPCAI2019weights.

References

  1. Becker M, Kirschner M, Sakas G (2014) Segmentation of risk structures for otologic surgery using the probabilistic active shape model (pasm). Proc SPIE 9036:9036–7

    Google Scholar 

  2. Besl PJ, McKay ND (1992) A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Int 14(2):239–256

    Article  Google Scholar 

  3. Caversaccio M, Gavaghan K, Wimmer W, Williamson T, Ansò J, Mantokoudis G, Gerber N, Rathgeb C, Feldmann A, Wagner F, Scheidegger O, Kompis M, Weisstanner C, Zoka-Assadi M, Roesler K, Anschuetz L, Huth M, Weber S (2017) Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Oto Laryngol 137(4):447–454

    Article  Google Scholar 

  4. Cootes T, Taylor C, Cooper D, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  5. Dahroug B, Tamadazte B, Weber S, Tavernier L, Andreff N (2018) Review on otological robotic systems: toward microrobot-assisted cholesteatoma surgery. IEEE Rev Biomed Eng 11:125–142

    Article  PubMed  Google Scholar 

  6. Fauser J, Stenin I, Kristin J, Klenzner T, Schipper J, Sakas G (2016) A software tool for planning and evaluation of non-linear trajectories for minimally invasive lateral skull base surgery. In: Tagungsb. der 15. Jahrestag. der Dtsch. Ges. f. Comput.- und Roboterass. Chirurgie e.V. (CURAC), pp 125–126

  7. Fauser J, Sakas G, Mukhopadhyay A (2018) Planning nonlinear access paths for temporal bone surgery. Int J Comput Assist Radiol Surg 13(5):637–646

    Article  PubMed  Google Scholar 

  8. Fauser J, Stenin I, Kristin J, Klenzner T, Schipper J, Fellner D, Mukhopadhyay A (2018) Generalized trajectory planning for nonlinear interventions. In: OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis, Springer International Publishing, Cham, pp 46–53

  9. Ferreira A, Tavares JMRS, Gentil F (2012) A review of segmentation algorithms for ear image data. In: 7th Iberian conference on information systems and technologies (CISTI 2012), pp 1–6

  10. Fichera L, Dillon NP, Zhang D, Godage IS, Siebold MA, Hartley BI, Noble JH, Russell PT, Labadie RF, Webster RJ (2017) Through the eustachian tube and beyond: a new miniature robotic endoscope to see into the middle ear. IEEE Robot Autom Lett 2(3):1488–1494

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gerber N, Bell B, Gavaghan K, Weisstanner C, Caversaccio M, Weber S (2014) Surgical planning tool for robotically assisted hearing aid implantation. Int J Comput Assist Radiol Surg 9(1):11–20

    Article  PubMed  Google Scholar 

  12. Gerber N, Reyes M, Barazzetti L, Kjer HM, Vera S, Stauber M, Mistrik P, Ceresa M, Mangado N, Wimmer W, Stark T, Paulsen RR, Weber S, Caversaccio M, Ballester MAG (2017) A multiscale imaging and modelling dataset of the human inner ear. Sci Data 4:170132

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kirschner M (2013) The probabilistic active shape model: from model construction to flexible medical image segmentation. Ph.D. thesis, Technische Universität, Darmstadt

  14. Kjer HM, Fagertun J, Vera S, Gil D, Ángel González Ballester M, Paulsen RR (2016) Free-form image registration of human cochlear mu ct data using skeleton similarity as anatomical prior. Pattern Recogn Lett 76:76–82 (special issue on Skeletonization and its application)

    Article  Google Scholar 

  15. Labadie RF, Balachandran R, Noble JH, Blachon GS, Mitchell JE, Reda FA, Dawant BM, Fitzpatrick JM (2014) Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. The Laryngoscope 124(8):1915–1922

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3d surface construction algorithm. In: Proceedings of the 14th annual conference on computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’87, pp 163–169

  17. Lu P, Barazzetti L, Chandran V, Gavaghan K, Weber S, Gerber N, Reyes M (2018) Highly accurate facial nerve segmentation refinement from CBCT/CT imaging using a super-resolution classification approach. IEEE Trans Biomed Eng 65(1):178–188

    Article  PubMed  Google Scholar 

  18. Moghaddam B, Pentland A (1997) Probabilistic visual learning for object representation. IEEE Trans Pattern Anal Mach Intell 19(7):696–710

    Article  Google Scholar 

  19. Noble JH, Dawant BM (2011) An atlas-navigated optimal medial axis and deformable model algorithm (nomad) for the segmentation of the optic nerves and chiasm in mr and ct images. Med Image Anal 15(6):877–884

    Article  PubMed Central  PubMed  Google Scholar 

  20. Noble JH, Warren FM, Labadie RF, Dawant BM (2008) Automatic segmentation of the facial nerve and chorda tympani in ct images using spatially dependent feature values. Med Phys 35(12):5375–5384

    Article  PubMed Central  PubMed  Google Scholar 

  21. Noble JH, Labadie RF, Majdani O, Dawant BM (2011) Automatic segmentation of intracochlear anatomy in conventional ct. IEEE Trans Biomed Eng 58(9):2625–2632

    Article  PubMed Central  PubMed  Google Scholar 

  22. Powell KA, Liang T, Hittle B, Stredney D, Kerwin T, Wiet GJ (2017) Atlas-based segmentation of temporal bone anatomy. Int J Comput Assist Radiol Surg 12(11):1937–1944

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Springer, Cham, pp 234–241

    Google Scholar 

  24. Ruiz Pujadas E, Piella G, Kjer HM, González Ballester MA (2018) Random walks with statistical shape prior for cochlea and inner ear segmentation in micro-ct images. Mach Vis Appl 29(3):405–414

    Article  Google Scholar 

  25. Stenin I, Hansen S, Becker M, Sakas G, Fellner D, Klenzner T, Schipper J (2014) Minimally invasive multi-port surgery of the lateral skull base. BioMed Res Int 2014:7

    Article  Google Scholar 

  26. Tack A, Mukhopadhyay A, Zachow S (2018) Knee menisci segmentation using convolutional neural networks: data from the osteoarthritis initiative. Osteoarthr Cartil 26(5):680–688

    Article  CAS  PubMed  Google Scholar 

  27. Torres R, Kazmitcheff G, De Seta D, Ferrary E, Sterkers O, Nguyen Y (2017) Improvement of the insertion axis for cochlear implantation with a robot-based system. Eur Arch Oto-Rhino-Laryngol 274(2):715–721

    Article  Google Scholar 

  28. Voormolen E, van Stralen M, Woerdeman PA, Pluim JJ, Noordman H, Viergever MM, Regli L, van der Sprenkel JB (2012) Determination of a facial nerve safety zone for navigated temporal bone surgery. Neurosurgery 70(1):50

    PubMed  Google Scholar 

  29. Weber S, Gerber N, Gavaghan KA, Williamson T, Wimmer W, Anso J, Brogna-Salas L, Chen D, Weisstanner C, Caversaccio M, Bell B (2013) Image guided and robotic assisted minimally invasive cochlear implantation. In: The Hamlyn symposium on medical robotics, pp 17–18

  30. Xianfen D, Siping C, Changhong L, Yuanmei W (2005) 3d semi-automatic segmentation of the cochlea and inner ear. In: 2005 IEEE engineering in medicine and biology 27th annual conference, pp 6285–6288

  31. Zhu S, Gao W, Zhang Y, Zheng J, Liu Z, Yuan G (2017) 3D automatic mri level set segmentation of inner ear based on statistical shape models prior. In: 2017 10th International congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI), pp 1–6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Fauser.

Ethics declarations

Conflict of interest

This research was partially funded by the German Research Foundation. The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article is partially based on anonymized patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 163 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fauser, J., Stenin, I., Bauer, M. et al. Toward an automatic preoperative pipeline for image-guided temporal bone surgery. Int J CARS 14, 967–976 (2019). https://doi.org/10.1007/s11548-019-01937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-01937-x

Keywords

Navigation