Skip to main content

Advertisement

Log in

Bullseye EVD: preclinical evaluation of an intra-procedural system to confirm external ventricular drainage catheter positioning

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

External ventricular drainage (EVD) is a life-saving procedure indicated for elevated intracranial pressure. A catheter is inserted into the ventricles to drain cerebrospinal fluid and release the pressure on the brain. However, the standard freehand EVD technique results in catheter malpositioning in up to 60.1% of procedures. This proof-of-concept study aimed to evaluate the registration accuracy of a novel image-based verification system “Bullseye EVD” in a preclinical cadaveric model of catheter placement.

Methods

Experimentation was performed on both sides of 3 cadaveric heads (n = 6). After a pre-interventional CT scan, a guidewire simulating the EVD catheter was inserted as in a clinical EVD procedure. 3D structured light images (Einscan, Shining 3D, China) were acquired of an optical tracker placed over the guidewire on the surface of the scalp, along with three distinct cranial regions (scalp, face, and ear). A computer vision algorithm was employed to determine the guidewire position based on the pre-interventional CT scan and the intra-procedural optical imaging. A post-interventional CT scan was used to validate the performance of the Bullseye optical imaging system in terms of trajectory and offset errors.

Results

Optical images which combined facial features and exposed scalp within the surgical field resulted in the lowest trajectory and offset errors of 1.28° ± 0.38° and 0.33 ± 0.19 mm, respectively. Mean duration of the optical imaging procedure was 128 ± 35 s.

Conclusions

The Bullseye EVD system presents an accurate patient-specific method to verify freehand EVD positioning. Use of facial features was critical to registration accuracy. Workflow automation and development of a user interface must be considered for future clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huyette DR, Turnbow BJ, Kaufman C, Vaslow DF, Whiting BB, Oh MY (2008) Accuracy of the freehand pass technique for ventriculostomy catheter placement: retrospective assessment using computed tomography scans. J Neurosurg 108(1):88–91. https://doi.org/10.3171/JNS/2008/108/01/0088

    Article  PubMed  Google Scholar 

  2. Abdoh MG, Bekaert O, Hodel J, Diarra SM, Le Guerinel C, Nseir R, Bastuji-Garin S, Decq P (2012) Accuracy of external ventricular drainage catheter placement. Acta Neurochir (Wien) 154(1):153–159. https://doi.org/10.1007/s00701-011-1136-9

    Article  Google Scholar 

  3. Brenke C, Fürst J, Katsigiannis S, Carolus AE (2020) High accuracy of external ventricular drainage placement using anatomical landmarks. Neurochirurgie 66(6):435–441. https://doi.org/10.1016/j.neuchi.2020.09.009

    Article  CAS  PubMed  Google Scholar 

  4. Arabi Y, Memish ZA, Balkhy HH, Francis C, Ferayan A, Al Shimemeri A, Almuneef MA (2005) Ventriculostomy-associated infections: incidence and risk factors. Am J Infect Control 33(3):137–143. https://doi.org/10.1016/j.ajic.2004.11.008

    Article  PubMed  Google Scholar 

  5. Lo CH, Spelman D, Bailey M, Cooper DJ, Rosenfeld JV, Brecknell JE (2007) External ventricular drain infections are independent of drain duration: an argument against elective revision. J Neurosurg 106(3):378–383. https://doi.org/10.3171/jns.2007.106.3.378

    Article  PubMed  Google Scholar 

  6. Shtaya A, Roach J, Sadek AR, Gaastra B, Hempenstall J, Bulters D (2018) Image guidance and improved accuracy of external ventricular drain tip position particularly in patients with small ventricles. J Neurosurg. https://doi.org/10.3171/2017.11.JNS171892

    Article  PubMed  Google Scholar 

  7. Gardner PA, Engh J, Atteberry D, Moossy JJ (2009) Hemorrhage rates after external ventricular drain placement. J Neurosurg 110(5):1021–1025. https://doi.org/10.3171/2008.9.JNS17661

    Article  PubMed  Google Scholar 

  8. Bogdahn U, Lau W, Hassel W, Gunreben G, Mertens HG, Brawanski A (1992) Continuous-pressure controlled, external ventricular drainage for treatment of acute hydrocephalus—evaluation of risk factors. Neurosurgery 31(5):898–903. https://doi.org/10.1227/00006123-199211000-00011 (discussion 903–4)

    Article  CAS  PubMed  Google Scholar 

  9. Dos Santos SC, Fortes Lima TT, Lunardi LW, Stefani MA (2017) External ventricular drain-related infection in spontaneous intracerebral hemorrhage. World Neurosurg 99:580–583. https://doi.org/10.1016/j.wneu.2016.12.071

    Article  PubMed  Google Scholar 

  10. Hersh EH, Yaeger KA, Neifert SN, Kim J, Dangayach NS, Weiss N (2019) Patterns of health care costs due to external ventricular drain infections. World Neurosurg 128:e31–e37. https://doi.org/10.1016/j.wneu.2019.03.197

    Article  PubMed  Google Scholar 

  11. Toma AK, Camp S, Watkins LD, Grieve J, Kitchen ND (2009) External ventricular drain insertion accuracy: Is there a need for change in practice? Neurosurgery 65(6):1197–1200. https://doi.org/10.1227/01.NEU.0000356973.39913.0B (discussion 1200–1)

    Article  PubMed  Google Scholar 

  12. Mostofi K, Khouzani RK (2016) Surface anatomy for implantation of external ventricular drainage: some surgical remarks. Surg Neurol Int 7(Suppl 22):S577–S580. https://doi.org/10.4103/2152-7806.189437

    Article  PubMed  PubMed Central  Google Scholar 

  13. AlAzri A, Mok K, Chankowsky J, Mullah M, Marcoux J (2017) Placement accuracy of external ventricular drain when comparing freehand insertion to neuronavigation guidance in severe traumatic brain injury. Acta Neurochir (Wien) 159(8):1399–1411. https://doi.org/10.1007/s00701-017-3201-5

    Article  Google Scholar 

  14. Ghajar JB (1985) A guide for ventricular catheter placement. Technical note. J Neurosurg 63(6):985–986. https://doi.org/10.3171/jns.1985.63.6.0985

    Article  CAS  PubMed  Google Scholar 

  15. O’Leary ST, Kole MK, Hoover DA, Hysell SE, Thomas A, Shaffrey CI (2000) Efficacy of the Ghajar guide revisited: a prospective study. J Neurosurg 92(5):801–803. https://doi.org/10.3171/jns.2000.92.5.0801

    Article  CAS  PubMed  Google Scholar 

  16. Kim D, Son W, Park J (2015) Guiding protractor for accurate freehand placement of ventricular catheter in ventriculoperitoneal shunting. Acta Neurochir (Wien) 157(4):699–702. https://doi.org/10.1007/s00701-015-2349-0

    Article  Google Scholar 

  17. Cabrilo I, Craven CL, Abuhusain H, Pradini-Santos L, Asif H, Marcus HJ, Reddy U, Watkins LD, Toma AK (2020) Neuronavigation-assisted bedside placement of bolt external ventricular drains in the intensive care setting: a technical note. Acta Neurochir (Wien) 163(4):1127–1133. https://doi.org/10.1007/s00701-020-04634-w

    Article  Google Scholar 

  18. Patil V, Gupta R, San José Estépar R et al (2015) Smart stylet: the development and use of a bedside external ventricular drain image-guidance system. Stereotact Funct Neurosurg 93(1):50–58. https://doi.org/10.1159/000368906

    Article  PubMed  Google Scholar 

  19. Manfield JH, Yu KKH (2017) Real-time ultrasound-guided external ventricular drain placement: technical note. Neurosurg Focus 43(5):E5. https://doi.org/10.3171/2017.7.FOCUS17148

    Article  PubMed  Google Scholar 

  20. Khanna O, Baldassari MP, Al Saiegh F, Mouchtouris N, Ghosh R, Theofanis TN, Evans JJ, Tjoumakaris S, Rosenwasser RH, Jabbour PM (2021) Ultrasound-guided ventricular puncture during cranioplasty. World Neurosurgery 146:e779–e785. https://doi.org/10.1016/j.wneu.2020.11.021

    Article  PubMed  Google Scholar 

  21. Lollis SS, Roberts DW (2008) Robotic catheter ventriculostomy: feasibility, efficacy, and implications. J Neurosurg 108(2):269–274. https://doi.org/10.3171/JNS/2008/108/2/0269

    Article  PubMed  Google Scholar 

  22. Feulner J, Lang S, Buder T, Struffert T, Buchfelder M, Brandner S (2018) Flat panel detector computed tomography-guided placement of external ventricular drains using the BrainLab headband and precalibrated disposable stylet instrument: a cadaveric feasibility study. World Neurosurg 115:324–328. https://doi.org/10.1016/j.wneu.2018.04.192

    Article  PubMed  Google Scholar 

  23. Gautschi OP, Smoll NR, Kotowski M, Schatlo B, Tosic M, Stimec B, Fasel J, Schaller K, Bijlenga P (2014) Non-assisted versus neuro-navigated and XperCT-guided external ventricular catheter placement: a comparative cadaver study. Acta Neurochir (Wien) 156(4):777–785. https://doi.org/10.1007/s00701-014-2026-8 (discussion 785)

    Article  Google Scholar 

  24. Eftekhar B (2016) App-assisted external ventricular drain insertion. J Neurosurg 125(3):754–758. https://doi.org/10.3171/2015.6.JNS1588

    Article  PubMed  Google Scholar 

  25. Eisenring CV, Burn F, Baumann M, Stieglitz LH, Kockro RA, Beck J, Raabe A, Oertel MF (2020) sEVD-smartphone-navigated placement of external ventricular drains. Acta Neurochir (Wien) 162(3):513–521. https://doi.org/10.1007/s00701-019-04131-9

    Article  Google Scholar 

  26. Skyrman S, Lai M, Edström E, Burström G, Förander P, Homan R, Kor F, Holthuizen R, Hendriks BH, Persson O (2021) Augmented reality navigation for cranial biopsy and external ventricular drain insertion. Neurosurg Focus 51(2):E7. https://doi.org/10.3171/2021.5.FOCUS20813

    Article  PubMed  Google Scholar 

  27. Coluccia D, Anon J, Rossi F, Marbacher S, Fandino J, Berkmann S (2016) Intraoperative fluoroscopy for ventriculoperitoneal shunt placement. World Neurosurg 86:71–78. https://doi.org/10.1016/j.wneu.2015.08.072

    Article  PubMed  Google Scholar 

  28. Reinertsen I, Jakola AS, Selbekk T, Solheim O (2014) Validation of model-guided placement of external ventricular drains. Int J Comput Assist Radiol Surg 9(5):777–784. https://doi.org/10.1007/s11548-013-0971-y

    Article  CAS  PubMed  Google Scholar 

  29. Stieglitz LH, Giordano M, Samii M, Luedemann WO (2010) A new tool for frameless stereotactic placement of ventricular catheters. Neurosurgery 67(3 Suppl Operative):ons131–ons135. https://doi.org/10.1227/01.NEU.0000382964.72262.9A (discussion ons135)

    Article  PubMed  Google Scholar 

  30. Villavicencio AT, Leveque JC, McGirt MJ, Hopkins JS, Fuchs HE, George TM (2003) Comparison of revision rates following endoscopically versus nonendoscopically placed ventricular shunt catheters. Surg Neurol 59(5):375–379. https://doi.org/10.1016/s0090-3019(03)00070-3 (discussion 379–80)

    Article  PubMed  Google Scholar 

  31. Maier-Hein L, Mountney P, Bartoli A, Elhawary H, Elson D, Groch A, Kolb A, Rodrigues M, Sorger J, Speidel S, Stoyanov D (2013) Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery. Med Image Anal 17(8):974–996. https://doi.org/10.1016/j.media.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  32. Burns DM, Newhook SCP, Richards RR, Whyne CM (2020) Glenoid implant positioning: a new approach using structured light. Semin Arthroplasty JSES 30(2):132–138. https://doi.org/10.1053/j.sart.2020.06.006

    Article  Google Scholar 

  33. Geng J (2011) Structured-light 3D surface imaging: a tutorial. Adv Opt Photon 3(2):128–160. https://doi.org/10.1364/AOP.3.000128

    Article  CAS  Google Scholar 

  34. Park J, Son W, Park KS, Kim MY, Lee J (2016) Calvarial slope affecting accuracy of Ghajar guide technique for ventricular catheter placement. J Neurosurg 124(5):1429–1433. https://doi.org/10.3171/2015.5.JNS15226

    Article  PubMed  Google Scholar 

  35. Raabe C, Fichtner J, Beck J, Gralla J, Raabe A (2018) Revisiting the rules for freehand ventriculostomy: a virtual reality analysis. J Neurosurg 128(4):1250–1257. https://doi.org/10.3171/2016.11.JNS161765

    Article  PubMed  Google Scholar 

  36. Rehman T, Rehman AU, Rehman A, Bashir HH, Ali R, Bhimani SA, Khan S (2012) A US-based survey on ventriculostomy practices. Clin Neurol Neurosurg 114(6):51–54. https://doi.org/10.1016/j.clineuro.2011.12.040

    Article  Google Scholar 

  37. Whitehead WE, Riva-Cambrin J, Wellons JC, Kulkarni AV, Holubkov R, Illner A, Oakes WJ, Luerssen TG, Walker ML, Drake JM (2013) No significant improvement in the rate of accurate ventricular catheter location using ultrasound-guided CSF shunt insertion: a prospective, controlled study by the hydrocephalus clinical research network. J Neurosurg Pediatr 12(6):565–574. https://doi.org/10.3171/2013.9.PEDS1346

    Article  PubMed  Google Scholar 

  38. Fan Y, Jiang D, Wang M, Song Z (2014) A new markerless patient-to-image registration method using a portable 3D scanner. Med Phys 41(10):101910. https://doi.org/10.1118/1.4895847

    Article  PubMed  Google Scholar 

  39. Bow H, Yang X, Chotai S, Feldman M, Yu H, Englot DJ, Miga MI, Pruthi S, Dawant BM, Parker SL (2020) Initial experience with using a structured light 3D scanner and image registration to plan bedside subdural evacuating port system placement. World Neurosurg 137:350–356. https://doi.org/10.1016/j.wneu.2020.01.203

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thomale U, Knitter T, Schaumann A, Ahmadi S, Ziegler P, Schulz M, Miethke C (2013) Smartphone-assisted guide for the placement of ventricular catheters. Child’s Nerv Syst 29(1):131–139. https://doi.org/10.1007/s00381-012-1943-1

    Article  CAS  Google Scholar 

  41. Poudel D, Lamichhane HP, Paudel S, Chand RB (2015) Evaluation of size of ventricles of human brain using magnetic resonance imaging technique. J Inst Sci Technol 20(1):6–14. https://doi.org/10.3126/jist.v20i1.13904

    Article  Google Scholar 

  42. Fried HI, Nathan BR, Rowe AS, Zabramski JM, Andaluz N, Bhimraj A, Guanci MM, Seder DB, Singh JM (2016) The insertion and management of external ventricular drains: an evidence-based consensus statement. Neurocrit Care 24(1):61–81. https://doi.org/10.1007/s12028-015-0224-8

    Article  PubMed  Google Scholar 

  43. Kirkman MA, Muirhead W, Sevdalis N (2017) The relative efficacy of 3 different freehand frontal ventriculostomy trajectories: a prospective neuronavigation-assisted simulation study. J Neurosurg 126(1):304–311. https://doi.org/10.3171/2016.1.JNS152263

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Normand Robert for his assistance with the CBCT imaging throughout the duration of this study. Support for this study was provided by the William and Susanne Holland Chair for Musculoskeletal Research.

Funding

This study was funded by the William and Susanne Holland Chair in Musculoskeletal Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cari M. Whyne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Research Ethics Board (REB) of Sunnybrook Health Sciences Centre (#4885) which operates in compliance with the Tri-Council Policy Statement 2nd edition, ICH GCP Guidelines, Part C Division 5 of the Food and Drug Regulations, Part C Division 3 of the Food and Drug Regulations, Part 4 of the Natural Health Products Regulations, Part 3 of the Medical Devices Regulations, and the Provisions of PHIPA 2004 and its applicable regulations. The Sunnybrook Research Ethics Board is registered with the U.S. Department of Health and Human Services (DHHS) Office for Human Research Protection (OHRP). The Sunnybrook REB has determined that an Informed Consent Form is not required for this cadaveric study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopfgartner, A., Burns, D., Suppiah, S. et al. Bullseye EVD: preclinical evaluation of an intra-procedural system to confirm external ventricular drainage catheter positioning. Int J CARS 17, 1191–1199 (2022). https://doi.org/10.1007/s11548-022-02679-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-022-02679-z

Keywords

Navigation