Skip to main content
Log in

Robust GPU-assisted camera tracking using free-form surface models

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

We propose a marker-less model-based camera tracking approach, which makes use of GPU-assisted analysis-by-synthesis methods on a very wide field of view (e.g. fish-eye) camera. After an initial registration based on a learned database of robust features, the synthesis part of the tracking is performed on graphics hardware, which simulates internal and external parameters of the camera, this way minimizing lens and viewpoint differences between a model view and a real camera image. Based on an automatically reconstructed free-form surface model we analyze the sensitivity of the tracking to the model accuracy, in particular the case when we represent curved surfaces by planar patches. We also examine accuracy and show on synthetic and on real data that the system does not suffer from drift accumulation. The wide field of view of the camera and the subdivision of our reference model into many textured free-form surface patches make the system robust against illumination changes, moving persons and other occlusions within the environment and provide a camera pose estimate in a fixed and known coordinate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adelson, E.H., Bergen, J.: The plenoptic function and the elements of early vision. In: Landy, M., Movshon, J.A. (eds) Computation Models of Visual Processing, pp. 3–20. MIT Press, Cambridge (1991)

  2. Baker, S., Gross, R., Matthews, I.: Lucas–Kanade 20 years on: a unifying framework: part 3. Technical Report CMU-RI-TR-03-35, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2003)

  3. Baker, S., Matthews, I.: Lucas–Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)

    Article  Google Scholar 

  4. Bartczak, B., Koeser, K., Woelk, F., Koch, R.: Extraction of 3D freeform surfaces as visual landmarks for real-time tracking. J. Real-time Image Process. (this issue) doi:10.1007/s11554-007-0042-0

  5. Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR ’97), p. 1000ff., Washington, DC, USA. IEEE Computer Society (1997)

  6. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  7. Bishop, C.M.: Pattern recognition and machine learning. Springer, Heidelberg (2006)

  8. Bleser, G., Becker, M., Stricker, D.: Real-time vision-based tracking and reconstruction. J. Real-time Image Process. (this issue) doi: 10.1007/s11554-007-0034-0

  9. Bleser, G., Wuest, H.: Stricker online camera pose estimation in partially known and dynamic scenes. In: Proceedings ISMAR 2006, Los Alamitos, CA, pp. 56–65 (2006)

  10. Chandaria, J., Thomas, G., Bartczak, B., Koeser, K., Koch, R., Becker, M., Bleser, G., Stricker, D., Wohlleber, C., Felsberg, M., Hol, J., Schoen, T., Skoglund, J., Slycke, P., Smeitz, S.: Real-time camera tracking in the MATRIS project. In: Proceedings of International Broadcasting Convention (IBC), Amsterdam, The Netherlands, pp. 321–328 (2006)

  11. NVIDIA Corporation. nvidia cg homepage. http://developer.nvidia.com/page/cg_main.html

  12. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proceedings International Conference Computer Vision, Nice (2003)

  13. Davison, A.J.: Locally planar patch features for real-time structure from motion. In: Proceedings of BMVC (2004)

  14. Denzler, J., Heigl, B., Zobel, M., Niemann, H.: Plenoptic models in robot vision. In: Künstliche Intelligenz, pp. 62–68 (2003)

  15. Duda, R.O., Hart, P.E., Stork, D.E.: Pattern Classification, 2nd edn. Wiley Interscience, New York (2001)

  16. Evers-Senne, J-F., Koch, R.: Image based rendering from handheld cameras using quad primitives. In: Vision, Modeling, and Visualization VMV: Proceedings (2003)

  17. Felsberg, M., Hedborg, J.: Real-time view-based pose recognition and interpolation for tracking initialization. J. Real-time Image Process. (this issue) doi: 10.1007/s11554-007-0044-y

  18. Felsberg, M., Hedborg, J.: Real-time visual recognition of objects and scenes using p-channel matching. In: Proceedings of SCIA, pp. 908–917 (2007)

  19. Fernando, R., Kilgard, M.J.: The Cg Tutorial: the Definitive Guide to Programmable Real-Time Graphics. Addison-Wesley, Reading (2003)

  20. Fleck, M.: Perspective projection: The Wrong Imaging Model. Technical Report TR 95-01, Computer Science, University of Iowa (1995)

  21. Foxlin, E., Naimark, L.: VIS-Tracker: a wearable vision-inertial self-tracker. In: Proceedings of IEEE Conference on Virtual Reality (VR 2003), Los Angeles, CA (2003)

  22. Fusiello, A.: Improving feature tracking with robust statistics. In: Pattern Analysis and Application, vol. 2, pp. 312–320. Springer, London (1999)

  23. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions (Wiley Series in Probability and Statistics). Wiley-Interscience, New York (revised edition, 2005)

  24. Heigl, B., Denzler, J., Niemann, H.: Combining computer graphics and computer vision for probabilistic visual robot navigation. In: Jacques G. Verly (eds) Enhanced and Synthetic Vision 2000, vol. 4023, pp. 226–235 (2000)

  25. Huber, P.J.: Robust estimation of a location parameter. Ann. Stat. 35(1), 73–101 (1964)

    MathSciNet  Google Scholar 

  26. Aloimonos, Y., Neumann, J., Fermuller, C.: Eyes from eyes: new cameras for structure from motion. In: In IEEE Workshop on Omnidirectional Vision, pp. 19–26 (2002)

  27. Jähne, B.: Digitale Bildverarbeitung, 4th edn. Springer, Heidelberg (1997)

  28. McGlone, J.C. (eds): Manual of Photogrammetry, chap. 2, 5th edn. ASPRS, pp. 98–102 (2004)

  29. Julier, S., Uhlmann, J.: A new extension of the Kalman filter to nonlinear systems. In: International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando (1997)

  30. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 511–517 (2004)

  31. Koch, R.: Dynamic 3D scene analysis through synthesis feedback control. IEEE Trans. Patt. Anal. Mach. Intell. Special issue on analysis and synthesis, vol. 15(6), 556–568 (1993)

    Google Scholar 

  32. Koch, R., Heigl, B., Pollefeys, M.: Image-Based Rendering from Uncalibrated Lightfields with Scalable Geometry. Lecture Notes in Computer Science (Multi-Image Analysis) , vol. 2032, pp. 51–66 (2001)

  33. Koeser, K., Bartczak, B., Koch, R.: Drift-free pose estimation with hemispherical cameras. In: Proceedings of CVMP 2006, London, pp. 20–28 (2006)

  34. Koeser, K., Haertel, V., Koch, R.: Robust feature representation for efficient camera registration. In: Lecture Notes in Computer Science 4174 (DAGM06), pp. 739–749 (2006)

  35. Lepetit, V., Fua, P.: Monocular model-based 3d tracking of rigid objects: a survey. Found. Trends Comput. Graph. Vis. 1(1), 1–89 (2005)

    Article  Google Scholar 

  36. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In: Conference on Computer Vision and Pattern Recognition (2005)

  37. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  38. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI81, pp. 674–679 (1981)

  39. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of BMVC02 (2002)

  40. Micusik, B., Pajdla, T.: Structure from motion with wide circular field of view cameras. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1135–1149 (2006)

    Article  Google Scholar 

  41. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Patt. Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  42. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65 (1–2), 43–72 (2005)

    Article  Google Scholar 

  43. Nistér, D.: Automatic dense reconstruction from uncalibrated video sequences. Ph.D. Thesis, Kungl Tekniska Hogskolen (2001)

  44. Nistér, D.: Preemptive RANSAC for live structure and motion estimation. In: Proceedings of ICCV, pp. 199–206 (2003)

  45. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. IEEE. Conf. Comput. Vis. Pattern. Recogn. (CVPR) 2, 2161–2168 (2006)

    Google Scholar 

  46. Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. Int. J. Comput. Vis. 59(3), 207–232 (2004)

    Google Scholar 

  47. Salomon, D.: Transformations and Projections in Computer Graphics. Springer, London (2006)

    MATH  Google Scholar 

  48. Scaramuzza, D., Martinelli, A., Siegwart, R.: A flexible technique for accurate omnidirectional camera calibration and structure from motion. Proc. IEEE. Int. Conf. Vis. Syst., p. 45ff (2006)

  49. Skrypnyk, I., Lowe, D.G.: Scene modelling, recognition and tracking with invariant image features. In: IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 110–119 (2004)

  50. Streckel, B., Koch, R.: Lens model selection for visual tracking. In: Lecture Notes in Computer Science 3663 (DAGM 2005), Vienna (2005)

  51. Stricker, D., Kettenbach, T.: Real-time markerless vision-based tracking for outdoor augmented reality applications. In: IEEE and ACM International Symposium on Augmented Reality (ISAR 2001) (2001)

  52. Thomas, G.A., Jin, J., Niblett, T., Urquhart, C.: A versatile camera position measurement system for virtual reality. In: Proceedings of International Broadcasting Convention, pp. 284–289 (1997)

  53. Thomas, G.A.: Real-time camera pose estimation for augmenting sports scenes. In: Proceedings of CVMP 2006, London, pp. 10–19 (2006)

  54. Thomas, G.A.: Real-time camera tracking using sports pitch markings. J. Real-time Image Process. (this issue) doi: 10.1007/s11554-007-0041-1

  55. Zhang, Z.Y.: Parameter-estimation techniques: a tutorial with application to conic fitting. IVC 15(1), 59–76 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the European Union in project MATRIS IST-002013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Koeser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeser, K., Bartczak, B. & Koch, R. Robust GPU-assisted camera tracking using free-form surface models. J Real-Time Image Proc 2, 133–147 (2007). https://doi.org/10.1007/s11554-007-0039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-007-0039-8

Keywords

Navigation