Skip to main content
Log in

Real-time assessment of bone structure positions via ultrasound imaging

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Computer-assisted orthopedic surgery allows clinicians to have better results and decreases the number of early prosthetic replacements. Nevertheless, the patient follow-up from pre-operative diagnosis to post-operative control cannot be assessed in a constant referential. In this paper, a real-time algorithm that extracts bone edges from images and, then, derives bony landmarks from these edges is proposed. Indeed, we assess in real-time the bone structure positions via ultrasound imaging to create a useful referential for pre-operative, intra-operative and post-operative measurements. To assist the clinician while acquiring bony anatomical landmarks, the extraction of the bone–soft tissue interface and bony landmarks from ultrasound images is done automatically. The experimentations were performed on a database of images from healthy volunteers, and the obtained results showed the efficiency and the stability of the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahn, C., Jung, Y., Kwon, O., Seo, J.: Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition. Pattern Recognit. 45(9), 3490–3500 (2012)

    Article  MATH  Google Scholar 

  2. Amin, D., Kanade, T., Gioia, A.M.D., Jaramaz, B.: Ultrasound registration of the bone surface for surgical navigation. Comput. Aided Surg. 1, 1–16 (2003)

    Article  Google Scholar 

  3. Barratt, D.C., Penney, G.P., Chan, C.S.K., Slomczykowski, M., Carter, T.J., Edwards, P.J., Hawkes, D.J.: Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery. IEEE Trans. Med. Imaging 25(3), 312–323 (2006)

    Article  Google Scholar 

  4. Chang, H., Chen, Z., Huang, Q., Shi, J., Li, X.: Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151(2), 632–644 (2015)

    Article  Google Scholar 

  5. Chen, T.K., Abolmaesumi, P., Pichora, D.R., Ellis, R.E.: A system for ultrasound-guided computer-assisted orthopaedic surgery. Comput. Aided Surg. 10(5), 281–292 (2005)

    Article  Google Scholar 

  6. Chevrefils, C., Cheriet, F., Aubin, C.E., Grimard, G.: Texture analysis for automatic segmentation of intervertebral disks of scoliotic spines from MR images. IEEE Trans. Inf. Technol. Biomed. 13(4), 608–620 (2009). doi:10.1109/TITB.2009.2018286

    Article  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubuisson, M.P., Jain, A.: A modified Hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 566–568. IEEE Computer Society Press, Jerusalem. doi:10.1109/ICPR.1994.576361 (1994)

  9. Gautheron, T., Leitner, F., Gautheron, C., Ernotte, D.: Navigation with ultra-sound for intra-medullary nailing. Int. Congr. Ser. 1281, 680–683 (2005)

    Article  Google Scholar 

  10. Gupta, D., Anand, R., Tyagi, B.: A hybrid segmentation method based on gaussian kernel fuzzy clustering and region based active contour model for ultrasound medical images. Biomed. Signal Process. Control 16, 98–112 (2015)

    Article  Google Scholar 

  11. He, P., Zheng, J.: Segmentation of tibia bone in ultrasound images using active shape models. In: Proceedings of the International Conference on IEEE Engineering in Medicine and Biology Society, Istanbul, pp. 2712–2715 (2001)

  12. Huang, Q., Bai, X., Li, Y., Jin, L., Li, X.: Optimized graph-based segmentation for ultrasound images. Neurocomputing 129, 216–224 (2014)

    Article  Google Scholar 

  13. Jain, A.K., Taylor, R.H.: Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. Proceedings of International Conference SPIE Medical Imaging, SPIE, Bellingham 5373, 131–142 (2004)

    Google Scholar 

  14. Kowalski, M., Górecki, A.: Total knee arthroplasty using the OrthoPilot computer-assisted surgical navigation system. Ortoped. Traumatol. Rehabil. 6(4), 456–460 (2004)

    Google Scholar 

  15. Lavallée, S., Cinquin, P., Szeliski, R., Peria, O.: Building a hybrid patient’s model for augmented reality in surgery: a registration problem. Comput. Biol. Med. 25(2), 149–164 (1995)

    Article  Google Scholar 

  16. Ma, B., Ellis, R.E.: Robust registration for computer-integrated orthopedic surgery: laboratory validation and clinical experience. Med. Image Anal. 7(3), 237–250 (2003)

    Article  Google Scholar 

  17. Masson-Sibut, A., Petit, E., Leitner, F., Normand, J., Nakib, A., Pinzuti, J.B. Bone surface segmentation in ultrasound images: application in computer assisted intramedullary nailing of the tibia shaft. In: Proceedings of the 2nd International Workshop on Medical Image Analysis and Description for Diagnosis Systems, Roma, pp. 34–42 (2011)

  18. Middleton, F.R., Palmer, S.H.: How accurate is Whiteside’s line as a reference axis in total knee arthroplasty? Knee 14(3), 204–7 (2007). doi:10.1016/j.knee.2007.02.002. http://www.ncbi.nlm.nih.gov/pubmed/17428665

  19. Seghers, D., Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Minimal shape and intensity cost path segmentation. IEEE Trans. Med. Imaging 26(8), 1115–1129 (2007)

    Article  Google Scholar 

  20. Sezgin, M., Sankur, B.: Selection of thresholding methods for nondestructive testing applications. Int. Conf. Image Process. (Thessaloniki, Greece) 3, 764–767 (2001)

    Google Scholar 

  21. Sugano, N.: Computer-assisted orthopedic surgery. J. Orthop. Sci. 8(3), 442–448 (2003)

    Article  Google Scholar 

  22. Thomas, J.G., Peters, R.A., Jeanty, P.: Automatic segmentation of ultrasound images using morphological operators. IEEE Trans. Med. Imaging 10(2), 180–186 (1991)

    Article  Google Scholar 

  23. Zheng, G., Kowal, J., González Ballester, Ma., Caversaccio, M., Nolte, L.P.: (i) Registration techniques for computer navigation. Curr. Orthop. 21(3), 170–179 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nakib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masson-Sibut, A., Nakib, A. Real-time assessment of bone structure positions via ultrasound imaging. J Real-Time Image Proc 13, 135–145 (2017). https://doi.org/10.1007/s11554-015-0520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-015-0520-8

Keywords

Navigation