Skip to main content
Log in

Real-time patch-based medical image modality propagation by GPU computing

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The synthesis of patient data of a certain medical image modality by applying an image processing pipeline starting from other modality is receiving a lot of interest recently, as it allows to save acquisition time and sometimes avoid radiation to the patient. An example of this is the creation of computerized tomography volumes from magnetic resonance imaging data, which can be useful for several applications such as electromagnetic simulations, cranial morphometry and attenuation correction in PET/MR systems. We present a fast patch-based algorithm for this purpose, implemented using graphics processing unit computing techniques and gaining up to \(\times\)15.9 of speedup against a multicore CPU solution and up to about \(\times\)75 against a single core CPU solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of parallel computing research: a view from Berkeley. Tech. Report No. UCB/EECS-2006-183 (2006)

  2. Bai, W., Shi, W., O’Regan, D.P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N.S., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32(7), 1302–1315 (2013)

    Article  Google Scholar 

  3. Barlas, G.: Multicore and GPU Programming. Elsevier, Morgan-Kaufmann, USA (2014)

    Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burgos, N., Cardoso, J.M., Thielemans, K., Modat, M., Pedemonte, S., Dickson, J., Barnes, A., Ahmed, R., Mahoney, C.J., Schott, J.M., Duncan, J.S., Atkinson, D., Arridge, S.R., Hutton, B.F., Ourselin, S.: Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans. Med. Imaging 33(12), 2332–2341 (2014)

    Article  Google Scholar 

  6. Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54(2), 940–954 (2011)

    Article  Google Scholar 

  7. Eklund, A., Dufort, P., Forsberg, D., Laconte, S.M.: Medical image processing on the GPU: past, present and future. Med. Image Anal. 17, 1073–1094 (2013)

    Article  Google Scholar 

  8. Flynn, M.: Very high-speed computing systems. Proc. IEEE 54, 1901–1909 (1966)

    Article  Google Scholar 

  9. Herraiz, J.L., España, S., Cabido, R., Montemayor, A.S., Desco, M., Vaquero, J.J., Udias, J.M.: GPU-based fast iterative reconstruction of fully 3D PET sinograms. IEEE Trans. Nucl. Sci. (TNS) 58(5), 2257–2263 (2011)

  10. Homann, H., Graesslin, I., Eggers, H., Nehrke, K., Vernickel, P., Katscher, U., Dössel, O., Börnert, P.: Local SAR management by RF shimming: a simulation study with multiple human body models. Magn. Reson. Mater. Phys. Biol. Med. 25(3), 193–204 (2012)

    Article  Google Scholar 

  11. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)

    Article  Google Scholar 

  12. Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86(1), 1–32 (2010)

    Article  MathSciNet  Google Scholar 

  13. Khronos OpenCL Working Group (2013) The OpenCL specification 2.0

  14. Kroon, D.J., Slump, C.: MRI modality transformation in Demon registration. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’09), pp. 963–966 (2009)

  15. NVIDIA Corp. (2015) CUDA C programming guide v.7.5

  16. OpenMP Architecture Review Board (2013) OpenMP specification 4.0. http://openmp.org/. Accessed 10 Mar 2015

  17. Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30(10), 1852–1862 (2011)

    Article  Google Scholar 

  18. Rueda, A., Malpica, N., Romero, E.: Single-image super-resolution of brain MR images using overcomplete dictionaries. Med. Image Anal. 17(1), 113–132 (2013)

    Article  Google Scholar 

  19. Shi, L., Liu, W., Zhang, H., Xie, Y., Wang, D.: A survey of GPU-based medical image computing techniques. Quant. Imaging Med. Surg. 2, 188–206 (2012)

    Google Scholar 

  20. Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image segmentation on GPUs—a comprehensive review. Med. Image Anal. 20(1), 1–18 (2015)

    Article  Google Scholar 

  21. Torrado-Carvajal, A., Hernandez-Tamames, J.A., Herraiz, J.L., Eryaman, Y., Rozenholc, Y., Adalsteinsson, E., Wald, L.L., Malpica, N.: A multi-atlas and label fusion approach for patient-specific MRI based segmentation. In: Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), vol. 22, p. 1177 (2014)

  22. Wilt, N.: The CUDA Handbook: A Comprehensive Guide to GPU Programming. Pearson Education, USA (2013)

    Google Scholar 

  23. Wagenknecht, G., Kaiser, H.J., Mottaghy, F.M., Herzog, H.: MRI for attenuation correction in PET: methods and challenges. Magn. Reson. Mater. Phys. Biol. Med. 26(1), 99–113 (2013)

    Article  Google Scholar 

  24. Wang, Z., Donoghue, C., Rueckert, D.: Patch-based segmentation without registration: application to knee MRI. In: 4th International Workshop on Machine Learning in Medical Imaging, pp. 98–105 (2013)

  25. Ye, D.H., Zikic, D., Gloker, B., Criminisi, A., Konukoglu, E.: Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. Lect. Notes Comput. Sci. 8149, 606–613 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been partially supported by the Spanish Government Projects Refs. TIN2015-69542-C2-1-R and TE2012-39095, and the NVIDIA GPU Education Center Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio S. Montemayor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcaín, E., Torrado-Carvajal, A., Montemayor, A.S. et al. Real-time patch-based medical image modality propagation by GPU computing. J Real-Time Image Proc 13, 193–204 (2017). https://doi.org/10.1007/s11554-016-0568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0568-0

Keywords

Navigation