Skip to main content
Log in

Efficient hardware implementation strategy for local normalization of fingerprint images

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Global techniques do not produce satisfying and definitive results for fingerprint image normalization due to the non-stationary nature of the image contents. Local normalization techniques are employed, which are a better alternative to deal with local image statistics. Conventional local normalization techniques involve pixelwise division by the local variance and thus have the potential to amplify unwanted noise structures, especially in low-activity background regions. To counter the background noise amplification, the research work presented here introduces a correction factor that, once multiplied with the output of the conventional normalization algorithm, will enhance only the feature region of the image while avoiding the background area entirely. In essence, its task is to provide the job of foreground segmentation. A modified local normalization has been proposed along with its efficient hardware structure. On the way to achieve real-time hardware implementation, certain important computationally efficient approximations are deployed. Test results show an improved speed for the hardware architecture while sustaining reasonable enhancement benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bailey, D.G.: Design for Embedded Image Processing on FPGAs. Wiley, London (2011)

    Book  Google Scholar 

  2. Bazen, A.M., Gerez, S.H.: Segmentation of Fingerprint Images. Workshop on Circuits, Systems and Signal Processing. Veldhoven, The Netherlands (2001)

    MATH  Google Scholar 

  3. Dragut, L., Eisank, C., Strasser, T.: Local variance for multi-scale analysis in geomorphometry. Geomorphology 130, 162–172 (2011)

    Article  Google Scholar 

  4. Fons, F., Fons, M., Canto, E., Lopez, M.: Flexible hardware for fingerprint image processing, research in microelectronics and electronics conference. PRIME 2007, 169–172 (2007)

    Google Scholar 

  5. Fons, F., Fons, M., Canto, E.: Approaching fingerprint image enhancement through reconfigurable hardware accelerators. In: IEEE International Symposium on Intelligent Signal Processing, WISP (2007)

  6. Gottschlich, C.: Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement. IEEE Trans. Image Process. 21, 2220–2227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Greeenberg, S.: Fingerprint image enhancement using filtering techniques. 15th Int. Conf. Pattern Recognit. 3, 322–325 (2000)

    Article  Google Scholar 

  8. Haidekker, M.: Advanced Biomedical Image Analysis. Wiley, London (2010)

    Book  MATH  Google Scholar 

  9. He, J., Bao, J.: Normalization of fingerprint image using the local feature. In: International Conference on Computer Science and Service Systems, pp. 1643-1646 (2012)

  10. Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement algorithm and performance evolution. IEEE Trans. Pattern Anal. Mach. Intell. 20, 777–789 (1998)

    Article  Google Scholar 

  11. Khan, M.A.U., Khan, T.M., Bailey, D.G., Kong, Y.: A spatial domain scar removal strategy for fingerprint image enhancement. Pattern Recognit. 60, 258–274 (2016)

    Article  Google Scholar 

  12. Khan, T.M., Khan, M.A.U., Kong, Y.: Fingerprint image enhancement using multi-scale DDFB based diffusion filters and modified Hong filters. Optik Int. J. Light Electron Opt. 125, 4206–4214 (2014)

    Article  Google Scholar 

  13. Khan, T.M., Khan, M.A.U., Kong, Y., Kittaneh, O.: Stopping criterion for linear anisotropic image diffusion: a fingerprint image enhancement case. EURASIP J. Image Video Process. 2016, 1–20 (2016)

    Article  Google Scholar 

  14. Kočevar, M., Kotnik, B., Chowdhury, A., Kačič, Z.: Real-time fingerprint image enhancement with a two-stage algorithm and block–local normalization. J. Real-Time Image Proc. 1–10 (2014). doi:10.1007/s11554-014-0440-z

  15. Lee, J.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980)

    Article  Google Scholar 

  16. Maio, D., Maltoni, D., Capelli, R., Wayman, j. L., Jain, A. K.: FVC2004: third fingerprint verification competition. In: First International Conference on Biometric Authentication (ICBA), pp. 1–7 (2004)

  17. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. Syst. 9, 62–66 (2011)

    Article  Google Scholar 

  18. Qin, M.: A fast and low cost SIMD architecture for fingerprint image enhancement. M.S. thesis, Department of Electrical Engineering, TUDelft (2007)

  19. Sepasian, M., Balachandran, W., Mares, C.: Image enhancement for fingerprint minutiae-based algorithms using CLAHE. Standard deviation analysis and sliding neighborhood. In: Proceedings of the World Congress on Engineering and Computer Science, pp. 978–988 (2008)

  20. Singh, P., Garg, A.K.: Morphology based non uniform background removal for particle analysis: a comparative study. Int. J. Comput. Corp. Res. 1(3), 1–31 (2011)

    Google Scholar 

  21. Soille, P., Najman, L.: On Morphological Hierarchical Representations for Image Processing and Spatial Data Clustering. Lecture Notes in Computer Science 7346, 43–67 (2012)

  22. Somorjeet Singh, S., Tangkeshwar Singh, Th, Mamata Devi, H., Sinam, Tejmani: Local contrast enhancement using local standard deviation. Int. J. Comput. Appl. 47, 31–35 (2012)

    Google Scholar 

  23. Vitabile, S., Conti, V., Lentini, G., Sorbello, F.: An Intelligent Sensor for Fingerprint Recognition. Lecture Notes in Computer Science 3824, 27–36 (2005)

  24. Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31, 111–127 (1999)

    Article  Google Scholar 

  25. Zhang, B., Zhang, S., Zhang, J., Jing, X.: A method of the region of interest extraction based on orientation entropy. In: IEEE International Conference on Broadband Network & Multimedia Technology (IC-BNMT), pp. 664–669 (2011)

  26. Zoss, R., Habegger, A., Bandi, V., Goette, J., Jacomet, M.: Comparing signal processing hardware-synthesis methods based on the Matlab tool-chain. In: 6th International Symposium on Electronic Design, Test and Applications, Queenstown, New Zealand, pp 281–286 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq M. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T.M., Bailey, D.G., Khan, M.A.U. et al. Efficient hardware implementation strategy for local normalization of fingerprint images. J Real-Time Image Proc 16, 1263–1275 (2019). https://doi.org/10.1007/s11554-016-0625-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0625-8

Keywords

Navigation