Skip to main content
Log in

An FPGA implementation of a tone mapping algorithm with a halo-reducing filter

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a real-time hardware implementation of an exponent-based tone mapping algorithm of Horé et al., that uses both local and global image information for improving the contrast and increasing the brightness of tone-mapped images. Although there are several tone mapping algorithms available in the literature, most of them require manual tuning of their rendering parameters. However, in our implementation, the algorithm has an embedded automatic key parameter estimation block that controls the brightness of the tone-mapped images. We also present the implementation of a Gaussian-based halo-reducing filter. The hardware implementation is described in Verilog and synthesized for a field programmable gate array device. Experimental results performed on different wide dynamic range images show that we are able to get images which are of good visual quality and have good brightness and contrast. The good performance of our hardware architecture is also confirmed quantitatively with the high peak signal-to-noise ratio and structural similarity index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. ALTERA. http://www.altera.com/products/fpga/overview.html (2015)

  2. Ashikhmin, M.: A tone mapping algorithm for high contrast images. In: Proceedings of the 13th Eurographics Workshop on Rendering (EGRW ’02), pp. 145–156, Aire-la-Ville, Switzerland (2002)

  3. Battiato, S., Castorina, A., Mancuso, M.: High dynamic range imaging for digital still camera: an overview. J. Electron. Imaging 12(3), 459–469 (2003)

    Article  Google Scholar 

  4. Bell, A.A., Brauers, J., Kaftan, J.N., Meyer-Ebrecht, D., Bocking, A., Aach, T.: High dynamic range microscopy for cytopathological cancer diagnosis. IEEE J. Sel. Top. Signal Process. 3(1), 170–184 (2009)

    Article  Google Scholar 

  5. Benedetti, A., Prati, A., Scarabottolo, N.: Image convolution on FPGAs: the implementation of a multi-FPGA FIFO structure. In: Proceedings of the 24th Conference on EUROMICRO ’98, p. 10123. IEEE Computer Society (1998)

  6. Brainard, David H., Wandell, Brian A.: Analysis of the retinex theory of color vision. J. Opt. Soc. Am. A 3(10), 1651–1661 (1986)

    Article  Google Scholar 

  7. Carletta, J.E., Hassan, F.H.: Method for Real-Time Implementable Local Tone Mapping for High Dynamic Range Images. US Patent App. 12/221,505. https://www.google.com/patents/US20090041376

  8. Cheng, Y.K., Shieh, H.P.D.: Colorimetric characterization of high dynamic range liquid crystal displays and its application. J. Displ. Technol. 5(1), 40–45 (2009)

    Article  Google Scholar 

  9. Chiu, C.T., Wang, T.H., Ke, W.M., Chuang, C.Y., Huang, J.S., Wong, W.S., Tsay, R.S., Wu, C.J.: Real-time tone-mapping processor with integrated photographic and gradient compression using 0.13μ technology on an ARM SoC platform. J. Signal Process. Syst. 64(1), 93–107 (2010)

  10. DiCarlo, J.M., Wandell, B.A.: Rendering high dynamic range images. In: Electronic Imaging, pp. 392–401. International Society for Optics and Photonics (2000)

  11. Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum 22, 419–426 (2003)

    Article  Google Scholar 

  12. Duan, J., Bressan, M., Dance, C., Qiu, G.: Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recognit. 43, 1847–1862 (2010)

    Article  Google Scholar 

  13. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. (TOG) 21, 249–256 (2002)

    Article  Google Scholar 

  14. Hall, R.: Illumination and Color in Computer Generated Imagery. Springer, Berlin (2012)

    Google Scholar 

  15. Hassan, F., Carletta, J.: An FPGA-based architecture for a local tone-mapping operator. J. Real-Time Image Process. 2(4), 293–308 (2007)

    Article  Google Scholar 

  16. Herscovitz, M., Yadid-Pecht, O.: A modified multi scale retinex algorithm with an improved global impression of brightness for wide dynamic range pictures. Mach. Vis. Appl. 15(4), 220–228 (2004)

    Article  Google Scholar 

  17. Hertel, D.W., Chang, E.: Image quality standards in automotive vision applications. In: IEEE Intelligent Vehicles Symposium, pp. 404–409 (2007)

  18. Horé, A., Yadid-Pecht, O.: A new filter for reducing halo artifacts in tone-mapped images. In: 22nd International Conference on Pattern Recognition (ICPR), pp. 889–894 (2014)

  19. Horé, A., Yadid-Pecht, O.: A statistical derivation of an automatic tone mapping algorithm for wide dynamic range display. In:IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2475–2479 (2014)

  20. Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM In: 20th International Conference on Pattern Recognition (ICPR), pp. 2366–2369 (2010)

  21. Horé, A., Ofili, C., Yadid-Pecht, O.: A joint global and local tone mapping algorithm for displaying wide dynamic range images. Intl J. Inf. Models Anal. 2(1), 3 (2013)

    Google Scholar 

  22. Iakovidou, C., Vonikakis, V., Andreadis, I.: FPGA implementation of a real-time biologically inspired image enhancement algorithm. J. Real-Time Image Process. 3(4), 269–287 (2008)

    Article  Google Scholar 

  23. Kantabutra, V.: On hardware for computing exponential and trigonometric functions. IEEE Trans. Comput. 45(3), 328–339 (1996)

    Article  MATH  Google Scholar 

  24. Lapray, P.J., Heyrman, B., Ginhac, D.: HDR-ARtiSt: an adaptive real-time smart camera for high dynamic range imaging. J. Real-Time Image Process. 1–16 (2014). doi:10.1007/s11554-013-0393-7

  25. Larson, G.W., Rushmeier, H., Piatko, C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Vis. Comput. Graph. 3(4), 291–306 (1997)

    Article  Google Scholar 

  26. Li, S.-A., Tsai, C.-Y.: Low-cost and high-speed hardware implementation of contrast-preserving image dynamic range compression for full-HD video enhancement. IET Image Process. 9(8), 605–614 (2015)

    Article  Google Scholar 

  27. Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. ACM Trans. Graph. (TOG) 27(3), 68:1–68:10 (2008)

    Article  Google Scholar 

  28. MathWorks: Curve Fitting Toolbox Users Guide (2015). http://in.mathworks.com/help/pdf_doc/curvefit/curvefit

  29. McCollum, A.J., Bowman, C.C., Daniels, P.A., Batchelor, B.G.: A histogram modification unit for real-time image enhancement. Comput. Vis. Graph. Image Process. 42(3), 387–398 (1988)

    Article  Google Scholar 

  30. Meylan, L., Susstrunk, S.: High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans. Image Process. 15(9), 2820–2830 (2006)

    Article  Google Scholar 

  31. Narasimha, R., Batur, U.: A real-time high dynamic range HD video camera. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2015)

  32. Ofili, C., Glozman, S., Yadid-Pecht, O.: Hardware implementation of an automatic rendering tone mapping algorithm for a wide dynamic range display. J. Low Power Electron. Appl. 3(4), 337 (2013)

    Article  Google Scholar 

  33. ON Semiconductor. 1/3-Inch CMOS Digital Image Sensor MT9M033 Data Sheet, Rev.G (2015)

  34. Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Timedependent visual adaptation for fast realistic image display. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 47–54 (2000)

  35. Popovic, V., Pignat, E., Leblebici, Y.: Performance optimization and FPGA implementation of real-time tone mapping. IEEE Trans. Circuits Syst. II Express Briefs 61(10), 803–807 (2014)

    Article  Google Scholar 

  36. Qiu, G., Duan, J.: An optimal tone reproduction curve operator for the display of high dynamic range images. IEEE Int. Symp. Circuits Syst. 6, 6276–6279 (2005)

    Google Scholar 

  37. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. (TOG) 21(3), 267–276 (2002)

    Article  Google Scholar 

  38. Reinhard, E., Ward, G., Pattanaik, S., Debevec, P., Heidrich, W., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. The Morgan Kaufmann Series in Computer Graphics, 2nd edn. Elsevier, Burlington (2010)

  39. Schlick, C.: Quantization techniques for visualization of high dynamic range pictures. In: Sakas, G., Maller, S., Shirley, P. (eds.) Photorealistic Rendering Techniques, Focus on Computer Graphics, pp. 7–20. Springer, Berlin (1995)

    Chapter  Google Scholar 

  40. Spivak, A., Belenky, A., Fish, A., Yadid-Pecht, O.: Analog encoding voltage—a key to ultra-wide dynamic range and low power CMOS image sensor. J. Low Power Electron. Appl. 3(1), 27–53 (2013)

    Article  Google Scholar 

  41. The Cornell Box—Cornell University Program of Computer Graphics. http://www.graphics.cornell.edu/online/box/

  42. Tsai, C.-Y.: A fast dynamic range compression with local contrast preservation algorithm and its application to real-time video enhancement. IEEE Trans. Multimed. 14(4), 1140–1152 (2012)

    Article  Google Scholar 

  43. Tumblin, J., Rushmeier, H.: Tone reproduction for realistic images. IEEE Comput. Graph. Appl. 13(6), 42–48 (1993)

    Article  Google Scholar 

  44. Texas Instruments DM 385 DaVinci Digital Media Processor (2015). http://www.ti.com/product/DM385

  45. Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99), pp. 83–90. ACM Press, New York (1999)

  46. Ureña, R., Martnez-Cañada, P., Gómez-López, J.M., Morillas, C., Pelayo, F.: Real-time tone mapping on GPU and FPGA. EURASIP J. Image Video Process. 2012(1), 1–15 (2012)

    Article  Google Scholar 

  47. Vytla, L., Hassan, F., Carletta, J.: A real-time implementation of gradient domain high dynamic range compression using a local poisson solver. J. Real-Time Image Process. 8(2), 153–167 (2013)

    Article  Google Scholar 

  48. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  49. Ward, G.: Anyhere Software. http://www.anyhere.com/gward/pixformat/tiffluvrend.html

  50. Watkins, A.E., Scheaffer, R.L., Cobb, G.W.: Statistics: From Data to Decision. Wiley, Hoboken (2010)

    MATH  Google Scholar 

  51. Yadid-Pecht, O.: Wide-dynamic-range sensors. Opt. Eng. 38(10), 1650–1660 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Ulian Shahnovich (I2Sense laboratory) for his helpful comments and support with the CAD. This research was supported by The Natural Sciences and Engineering Research Council of Canada (NSERC), the Alberta Informatics Circle of Research Excellence (iCORE)/Alberta Innovates Technology Futures (AITF) and CMC Microsystems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasoon Ambalathankandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambalathankandy, P., Horé, A. & Yadid-Pecht, O. An FPGA implementation of a tone mapping algorithm with a halo-reducing filter. J Real-Time Image Proc 16, 1317–1333 (2019). https://doi.org/10.1007/s11554-016-0635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0635-6

Keywords

Navigation