Skip to main content
Log in

Novel one-dimensional and two-dimensional forward discrete wavelet transform 5/3 filter architectures for efficient hardware implementation

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

We implemented a more efficient circuit for one-dimensional (1-D) forward discrete wavelet transform (DWT) 5/3 filter. Our design utilizes processing and memory resources that are wasted in some other state-of-the-art solutions and is at least 33% simpler in terms of used registers, is 17% simpler in terms of used logic elements, has 7% higher maximum operating frequency and has 2% lower total power dissipation than previously published designs. The advantages of our design are achieved by a novel non-stationary filter topology which reuses the same registers for generating both low-pass and high-pass output coefficients, in different time slots, due to feed-forward and feedback paths. Our design is suitable for image compression systems which use 5/3 filter, e.g., JPEG 2000. We also proposed two-dimensional (2-D) DWT 5/3 architecture which uses implemented 1-D DWT filter design. The proposed 2-D DWT architecture outperforms all previously published architectures in terms of required memory capacity, which is at least 20% lower than memory capacity in any other reported solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Daubechies, I.: The wavelet transform time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  Google Scholar 

  2. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  Google Scholar 

  3. Acharya, T., Tsai, P.S.: JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures. Wiley, Hoboken (2004)

    Book  Google Scholar 

  4. Caglar, H., Liu, Y., Akansu, N.: Optimal PR-QMF design for subband image coding. J. Vis. Commun. Image Represent. 4(3), 242–253 (1993)

    Article  Google Scholar 

  5. Egger, O., Li, W.: Subband coding of images using asymmetrical filter banks. IEEE Trans. Image Process. 4(4), 478–485 (1995)

    Article  Google Scholar 

  6. Li, W., Egger, O.: Improved subband coding of images using unequal length PR filters. In: 14th Gretsi Symposium Signal and Image Processing, pp. 451–454 (1993)

  7. Le Gall, D., Tabatabai, A.: Subband coding of digital images using symmetric short kernel filters and arithmetic coding techniques. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 761–764 (1988)

  8. Parhi, K.K., Nishitani, T.: VLSI architectures for discrete wavelet transforms. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1(2), 191–202 (1993)

    Article  Google Scholar 

  9. Wu, P.C., Chen, L.G.: An efficient architecture for two-dimensional discrete wavelet transform. IEEE Trans. Circuit Syst. Video Technol. 11(4), 536–545 (2001)

    Article  Google Scholar 

  10. Cheng, C., Parhi, K.K.: High-speed VLSI implementation of 2-D discrete wavelet transform. IEEE Trans. Signal Process. 56(1), 393–403 (2008)

    Article  MathSciNet  Google Scholar 

  11. Usha, B.N., Chilambuchelvan, A.: Efficient VLSI architecture for discrete wavelet transform. Int. J. Comput. Sci. Issues (Online) 1(1), 32–36 (2011)

    Google Scholar 

  12. Ghantous, M., Bayoumi, M.: P2E-DWT: a parallel and pipelined efficient VLSI architecture of 2-D discrete wavelet transform. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 941–944 (2011)

  13. Liu, C.C., Shiau, Y.H., Jou, J.M.: Design and implementation of a progressive image coding chip based on the lifted wavelet transform. In: 11th VLSI Design/CAD Symposium (2000)

  14. Jou, J.M., Shiau, Y.H., Liu, C.C.: Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 529–532 (2001)

  15. Lian, C.J, Chen, K.F., Chen, H.H., Chen, L.G.: Lifting based discrete wavelet transform architecture for JPEG2000. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 445–448 (2001)

  16. Andra, K., Chakrabarti, C., Acharya, T.: A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Signal Process. 50(4), 966–977 (2002)

    Article  Google Scholar 

  17. Huang, C.T., Tseng, P.C., Chen, L.G.: Flipping structure: an efficient VLSI architecture for lifting-based discrete wavelet transform. IEEE Trans. Signal Process. 52(4), 1080–1089 (2004)

    Article  MathSciNet  Google Scholar 

  18. Chang, W.H., Lee, Y.S., Peng, W.S., Lee, C.Y.: A line-based, memory efficient and programmable architecture for 2D DWT using lifting scheme. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 330–333 (2001)

  19. Liao, H., Mandal, M.K., Cockburn, B.F.: Efficient implementation of lifting-based discrete wavelet transform. Electron. Lett. 38(18), 1010–1012 (2002)

    Article  Google Scholar 

  20. Liao, H., Mandal, M.K., Cockburn, B.F.: Efficient architectures for 1-D and 2-D lifting-based wavelet transform. IEEE Trans. Signal Process. 52(5), 1315–1326 (2004)

    Article  MathSciNet  Google Scholar 

  21. Martina, M., Masera, G., Piccinini, G., Zamboni, M.: Novel JPEG 2000 compliant DWT and IWT VLSI implementations. J. VLSI Signal Process. Syst. Signal Image Video Technol. 35(2), 137–153 (2003)

    Article  Google Scholar 

  22. Meher, P.K., Mohanty, B.K., Swamy, M.N.S.: Low-area and low-power reconfigurable architecture for convolution-based 1-D DWT using 9/7 and 5/3 filters. In: International Conference on VLSI Design, pp. 327–332 (2015)

  23. Acharya, T., Chakrabarti, C.: A survey on lifting-based discrete wavelet transform architectures. J. VLSI Signal Process. 42(3), 321–339 (2006)

    Article  Google Scholar 

  24. Vishwanath, M., Owens, R.M., Irwin, M.J.: VLSI architectures for the discrete wavelet transform. IEEE Trans. Circuits Syst. II 42(5), 305–316 (1995)

    Article  Google Scholar 

  25. Chrysafis, C., Ortega, A.: Line-based, reduced memory, wavelet image compression. IEEE Trans. Image Process. 9(3), 378–389 (2000)

    Article  MathSciNet  Google Scholar 

  26. Barua, S., Carletta, J.E., Kotteri, K.A., Bell, A.E.: An efficient architecture for lifting-based two-dimensional discrete wavelet transform. Integr. VLSI J. 38(3), 341–352 (2005)

    Article  Google Scholar 

  27. Xiong, C.-Y., Tian, J., Liu, J.: Efficient high-speed/low-power line-based architecture for two-dimensional discrete wavelet transform using lifting scheme. IEEE Trans. Circuits Syst. Video Technol. 16(2), 309–316 (2006)

    Article  Google Scholar 

  28. Xiong, C.-Y., Tian, J.-W., Liu, J.: Efficient architecture for 2-D discrete wavelet transform using lifting scheme. IEEE Trans. Image Process. 16(3), 607–614 (2007)

    Article  MathSciNet  Google Scholar 

  29. Mohanty, B.K., Meher, P.K.: Memory efficient modular VLSI architecture for highthroughput and low-latency implementation of multilevel lifting 2-D DWT. IEEE Trans. Signal Process. 59(5), 2072–2084 (2011)

    Article  MathSciNet  Google Scholar 

  30. Aziz, S.M., Pham, D.M.: Efficient parallel architecture for multi-level forward discrete wavelet transform processors. Comput. Electr. Eng. 38(5), 1325–1335 (2012)

    Article  Google Scholar 

  31. Hsia, C.-H., Chiang, J.-S., Guo, J.-M.: Memory-efficient hardware architecture of 2-D dual-mode lifting-based discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 23(4), 671–683 (2013)

    Article  Google Scholar 

  32. Darji, A.D., Kushwah, S.S., Merchant, S.N., Chandorkar, A.N.: High-performance hardware architectures for multi-level lifting-based discrete wavelet transform. Eurasip J. Image Video Process. 47, 1–19 (2014)

    Google Scholar 

  33. Hsia, C.-H., Chiang, J.-S., Chang, S.-H.: An efficient VLSI architecture for 2-D dual-mode SMDWT. In: IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 775–779 (2013)

  34. Hsia, C.-H.: A new VLSI architecture for symmetric mask-based discrete wavelet transform. J Internet Technol 15(7), 1083–1090 (2014)

    Google Scholar 

  35. Rajović, V., Savić, G., Prokin, M.: Hardware realization of fast image encoder with minimum memory size. In: 22nd Telecommunications Forum (TELFOR), pp. 717–724 (2014)

  36. Savić, G., Prokin, M., Rajović, V., Prokin, D.: Hardware realization of direct subband transformer with minimum used resources. In: 4th Mediterranean Conference on Embedded Computing (MECO), pp. 220–223 (2015)

  37. Dillen, G., Georis, B., Legat, J.D., Cantineau, O.: Combined line-based architecture for the 5–3 and 9–7 wavelet transform of JPEG2000. IEEE Trans. Circuits Syst. Video Technol. 13(9), 944–950 (2003)

    Article  Google Scholar 

  38. Lan, X., Zheng, N., Liu, Y.: Low-power and high-speed VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Consum. Electr. 51(2), 379–385 (2005)

    Article  Google Scholar 

  39. Liu, L., Chen, N., Meng, H., Zhang, L., Wang, Z., Chen, H.: A VLSI architecture of JPEG2000 encoder. IEEE J. Solid State Circuits 39(11), 2032–2040 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Ministry of Education, Science and Technology Development of Republic of Serbia under Grant No. TR32039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Savić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savić, G., Prokin, M., Rajović, V. et al. Novel one-dimensional and two-dimensional forward discrete wavelet transform 5/3 filter architectures for efficient hardware implementation. J Real-Time Image Proc 16, 1459–1478 (2019). https://doi.org/10.1007/s11554-016-0656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0656-1

Keywords

Navigation