Skip to main content
Log in

Real-time multi-scale parallel compressive tracking

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Robust visual tracking is a challenging problem because the appearance of a target may rapidly change due to significant variations in the object’s motion and the surrounding illumination. In this paper, a novel robust visual tracking algorithm is proposed based on an existing compressive tracking method. The proposed algorithm adopts multiple naive Bayes classifiers, each trained under a different scale condition, to realize online parallel multi-scale classification. Further, each classifier was initialized by randomly generating different types of Haar-like features. By doing so, the robustness of the feature classification can be improved to obtain more accurate tracking results. To enhance the real-time performance of the visual tracking system, the formula of the naive Bayes classifier is studied and simplified to speed up the processing speed of parallel multi-scale feature classification. After acceleration via formula simplification and parallel implementation, the proposed visual tracking algorithm can reach a tracking performance of approximately 45 frames per second (fps) when dealing with images of 642 × 352 pixels on a popular Intel Core i5-3230M platform. The experimental results show that the proposed algorithm outperforms state-of-the-art visual tracking methods on challenging videos in terms of success rate, tracking accuracy, and visual comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Avidan, S.: Support vector tracking. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. I, pp. 184–191 (2001)

  2. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  3. Jurie, F., Dhome, M.: Hyperplane approximation for template matching. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 996–1000 (2002)

    Article  Google Scholar 

  4. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)

  5. Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Proceedings European Conference on Computer Vision, vol. 8693, pp. 127–141 (2014)

    Chapter  Google Scholar 

  6. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings British Machine Vision Conference, pp. 47–56 (2006)

  7. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Proceedings European Conference on Computer Vision, pp. 234–247 (2008)

    Google Scholar 

  8. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 983–990 (2012)

  9. Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  10. Zhang, K., Song, H.: Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn. 46(1), 397–411 (2013)

    Article  MathSciNet  Google Scholar 

  11. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking–learning–detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  12. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Proceedings European Conference on Computer Vision, pp. 864–877 (2012)

    Chapter  Google Scholar 

  13. Zhang, K., Zhang, L., Yang, M.-H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)

    Article  Google Scholar 

  14. Gao, Y., Zhou, H., Zhang, X.: Enhanced fast compressive tracking based on adaptive measurement matrix. IET Comput. Vis. 9(6), 857–863 (2015)

    Article  Google Scholar 

  15. Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Vis. Comput. 31(4), 471–484 (2015)

    Article  Google Scholar 

  16. Jenkins, M.D., Barrie, P., Buggy, T., Morison, G.: Extended fast compressive tracking with weighted multi-frame template matching for fast motion tracking. Pattern Recogn. Lett. 69, 82–87 (2016)

    Article  Google Scholar 

  17. Bai Y., Tang, M.: Robust tracking via weakly supervised ranking SVM. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, pp. 1854–1861 (2012)

  18. Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.-M., Hicks, S.L., Torr, P.H.S.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2014)

    Article  Google Scholar 

  19. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Achlioptas, D.: Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

    Article  MathSciNet  Google Scholar 

  21. Ng, A., Jordan, M.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. In: Proceedings Advances in Neural Information Processing Systems, pp. 841–848 (2002)

  22. Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Stat. 12(3), 793–815 (1984)

    Article  MathSciNet  Google Scholar 

  23. Visual tracker benchmark. http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html

  24. Tracking with online multiple instance learning (MILTrack). http://vision.ucsd.edu/~bbabenko/project_miltrack.html

  25. C++ implementation of TLD (OpenTLD). https://github.com/alantrrs/OpenTLD

  26. Everingham, M., Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object class (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  27. The experimental results website. http://www.ee.tku.edu.tw/~stuProject/stuProject2016/e224/MSPCT/ExpResults.html

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan, ROC under grant MOST 105-2221-E-032-024 and 103-2632-E-032-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yi Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CY., Feng, YC. Real-time multi-scale parallel compressive tracking. J Real-Time Image Proc 16, 2073–2091 (2019). https://doi.org/10.1007/s11554-017-0713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-017-0713-4

Keywords

Navigation