Skip to main content
Log in

Real-time impulse noise removal

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

An adaptive interpolation-based impulse noise removal (AIBINR) algorithm is proposed to remove impulse noise from color and gray-scale images in real time. AIBINR works fast and has no need for parameter tuning to remove fixed-valued impulse noise. A GPU application has been developed to demonstrate the speed and inherent parallelization capabilities of the proposed method. Using the high-speed implementation, we have shown that AIBINR can denoise color images fast enough to be used in real-time video denoising, while having comparable denoising performance when compared to the state-of-the-art methods without any modification to its parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aguilar, J.O., Atoche, A.C., Alvarez, R.C., Castillo, J.V., Villalón Turrubiates, I., Pérez-Martínez, O.: Enhancement and edge-preserving denoising: an opencl-based approach for remote sensing imagery. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 9, 5482–5492 (2016)

    Article  Google Scholar 

  2. Ahmed, F., Das, S.: Removal of high-density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean. IEEE Trans. Fuzzy Syst. 22, 13521358 (2014)

    Article  Google Scholar 

  3. Blender, O.: Big Buck Bunny. https://peach.blender.org (2008a). Accessed 14 Dec 2017

  4. Blender, O.: Big Buck Bunny. https://media.xiph.org/BBB/BBB-1080-png/ (2008b). Accessed 12 Dec 2017

  5. Gand, Botella U., Meyer-Baese, Garcìa A., Rodrìguez, M.: Quantization analysis and enhancement of a vlsi gradient-based motion estimation architecture. Digit Signal Process 22, 1174–1187 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chan, R., Ho, C.W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14, 1479–1485 (2005)

    Article  Google Scholar 

  7. Cooling, J.E.: Software Design for Real-time Systems. Springer, New York (1991)

    Book  Google Scholar 

  8. Deepti, P.G., Borker, M., Sivaswamy, J.: Impulse noise removal from color images with hopfield neural network and improved vector median filter. Sixth Indian conf computer vision, graphics image processing (ICVGIP) pp. 17–24 (2008)

  9. Esakkirajan, S., Veerakumar, T.: Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Process. Lett. 18, 287–290 (2011)

    Article  Google Scholar 

  10. Escande, P., Weiss, P., Zhang, W.: A variational model for multiplicative structured noise removal. J. Math. Imaging Vis. 57, 43–55 (2017)

    Article  MathSciNet  Google Scholar 

  11. González, D., Botella, G., Garcìa, C., Prieto, M., Tirado, F.: Acceleration of block-matching algorithms using a custom instruction-based paradigm on a nios ii microprocessor. EURASIP J. Adv. Signal Process. 1, 1–20 (2013a)

    Google Scholar 

  12. González, D., Botella, G., Meyer-Baese, U., Garcìa, C., Sanz, C., Prieto-Matcìas, M., Tirado, F.: A low cost matching motion estimation sensor based on the nios ii microprocessor. Sensors 2012(12), 13126–13149 (2013b)

    Google Scholar 

  13. Gu, Q., Ishii, I.: Review of some advances and applications in real-time high-speed vision: our views and experiences. Int. J. Autom. Comput. 13(4), 305–318 (2016)

    Article  Google Scholar 

  14. Hsia, S.C.: Parallel vlsi design for a real-time video-impulse noise-reduction processor. IEEE Trans. Very Large Scale Integr. VLSI Syst. 11, 651–658 (2013)

    Article  Google Scholar 

  15. Hwang, H., Haddad, R.: Adaptive median filters:new algorithms and results. IEEE Trans. Image Process. 8, 499–502 (1995)

    Article  Google Scholar 

  16. Jafar, I.F., AlNa’mneh, R.A., Darabkh, K.A.: Efficient improvements on the bdnd filtering algoritm for the removal of high-density impulse noise. IEEE Trans. Image Process. 22, 1223–1232 (2013)

    Article  MathSciNet  Google Scholar 

  17. Jelodari, P.T., Kordasiabi, M.P., Sheikhaei, S., Forouzandeh, B.: Fpga implementation of an adaptive window size image impulse noise suppression system. J. Real-Time Image Proccess. 1, 1–12 (2017)

    Google Scholar 

  18. Kalyoncu, C., Toygar, O., Demirel, H.: Interpolation based impulse noise removal. IET Image Proc. 7, 777–785 (2013)

    Article  Google Scholar 

  19. Kandemir, C., Kalyoncu, C., Toygar, O.: A weighted mean filter with spatial-bias elimination for impulse noise removal. Digit. Signal Proc. 46, 164–174 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ko, S., Lee, Y.H.: Center weighted median filters and their applications to image enhancement. IEEE Trans. Circuits Syst. 38, 984–993 (1991)

    Article  Google Scholar 

  21. Kumar, V., Asati, A., Gupta, A.: Low-latency median filter core for hardware implementation of 5 \(\times\) 5 median filtering. IET Image Proc. 11, 927–934 (2016)

    Article  Google Scholar 

  22. Law, J.: NVIDIA GeForce GTX 1050 Ti shootout: all hail the entry-level kings. http://www.hardwarezone.com.my/feature-nvidia-geforce-gtx-1050-ti-shootout-all-hail-entry-level-kings (2017). Accessed 8 Dec 2017

  23. Lee, S., Maik, V., Jang, J., Shin, J., Paik, J.: Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images. IEEE Trans. Consum. Electron. 51, 648–653 (2005)

    Article  Google Scholar 

  24. Li, D., Liu, C., Gan, W.: A new cognitive model: cloud model. Int. J. Intell. Syst. 24, 357–375 (2009)

    Article  Google Scholar 

  25. Li, F., Fan, J.: Salt and pepper noise removal by adaptive median filter and minimal surface inpainting. Second Int congress image and signal processing (CISP) pp. 1–5 (2009)

  26. Lin, H., Willson, A.N.: Median filters with adaptive length. IEEE Trans. Circuits Syst. 35, 675–690 (1998)

    Article  MathSciNet  Google Scholar 

  27. Martin, J.: Programming real-time computer systems. Prentice-Hall, Princeton (1965)

    Google Scholar 

  28. Mielikainen, J., Huang, B., Huang, H.L.A., Lee, T.: Performance and scalability of the jcsda community radiative transfer model (crtm) on nvidia gpus. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 8, 1519–1527 (2015)

    Article  Google Scholar 

  29. Ng, P.E., Ma, K.K.: A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Trans. Image Process. 15, 1506–1516 (2006)

    Article  Google Scholar 

  30. Roy, A., Singha, J., Manam, L., Laskar, R.H.: Combination of adaptive vector median filter and weighted mean filter for removal of high-density impulse noise from colour images. IET Image Proc. 11, 352–361 (2017)

    Article  Google Scholar 

  31. Song, Y., Han, Y., Lee, S.: Pixel correlation-based impulse noise reduction. 17th Korea Japan Joint Workshop on Frontiers of Computer Vision (FCV), pp. 1–4 (2011)

  32. Tan, X., Liu, Y., Zuo, C.L., Zhang, M.: A real-time video denoising algorithm with fpga implementation for poisson gaussian noise. J. Real-Time Image Proccess. 13, 327–343 (2017)

    Article  Google Scholar 

  33. Toh, K.K.V., Isa, N.A.M.: Noise adaptive fuzzy switching median filter for salt-andpepper noise reduction. IEEE Signal Process. Lett. 17, 281–284 (2010)

    Article  Google Scholar 

  34. Toprak, A., Güler, I.: Impulse noise reduction in medical images with the use of switch mode fuzzy adaptive median filter. Digit. Signal Proc. 17, 711–723 (2007)

    Article  Google Scholar 

  35. Toprak, A., Özerdem, M.S., Güler, I.: Suppression of impulse noise in mr images using artificial intelligent based neuro-fuzzy adaptive median filter. Digit. Signal Proc. 18, 391–405 (2008)

    Article  Google Scholar 

  36. Wang, Z., Zhang, D.: Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Circuits Syst. 46, 78–80 (1999)

    Article  Google Scholar 

  37. Yang, R., Yin, L., Gabbouj, M., Astola, J., Neuvo, Y.: Optimal weighted median filtering under structural constraints. IEEE Trans. Signal Process. 43, 591–604 (1995)

    Article  Google Scholar 

  38. Zhou, Z.: Cognition and removal of impulse noise with uncertainty. IEEE Trans. Image Process. 21, 3157–3167 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Kalyoncu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökcen, A., Kalyoncu, C. Real-time impulse noise removal. J Real-Time Image Proc 17, 459–469 (2020). https://doi.org/10.1007/s11554-018-0791-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-018-0791-y

Keywords

Navigation