Skip to main content
Log in

Efficient cascading of multi-domain image Gaussian noise filters

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Image denoising is a well explored but still an active research topic. The focus is usually on achieving higher numerical quality which is theoretically interesting, however, often the factor of computation cost is not considered. Our idea is to employ different image Gaussian noise filters to construct an effective image denoiser, where the deficiency of each filter is compensated with others, while a wide variation of quality versus speed can be achieved. We integrate filters using different cascaded forms and show that if two filters use uncorrelated features, their cascaded form provides a higher quality than each separately. We start with easy-to-implement filters employing pixel- and frequency-domain with different kernel size to construct a fast yet high-quality multi-domain denoiser. Then, we propose more complex denoisers by integrating our cascaded multi-domain denoiser to other state-of-the-art denoising methods. Simulations show that the quality of proposed multi-domain denoiser is significantly higher than its building-blocks. We also show that the proposed multi-domain denoiser can be integrated to state-of-the-art denoisers to from a more effective denoiser, while adding negligible complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Levin, A., Nadler, B.: Natural image denoising: optimality and inherent bounds. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2833–2840 (2011)

  2. Ponomarenko, N., Zemlyachenko, A., Lukin, V., Egiazarian, K., Astola, J.: “Performance analysis of visually lossless image compression. In: International Workshop on Video Processing and Quality Metrics, pp. 1–6. Scottsdale, USA (2012)

  3. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  4. Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice-Hall Inc, Upper Saddle River (1990)

    Google Scholar 

  5. Haykin, S., Widrow, B.: Least-Mean-Square Adaptive Filters, vol. 31. Wiley, New York (2003)

    Book  Google Scholar 

  6. Shao, L., Zhang, H., de Haan, G.: An overview and performance evaluation of classification-based least squares trained filters. IEEE Trans. Image Process. 17(10), 1772–1782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846 (1998)

  8. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bouboulis, P., Slavakis, K., Theodoridis, S.: Adaptive kernel-based image denoising employing semi-parametric regularization. IEEE Trans. Image Process. 19(6), 1465–1479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. IEEE Conf. Comput. Vis. Pattern Recog. 2, 60–65 (2005)

    MATH  Google Scholar 

  11. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)

    Article  Google Scholar 

  12. Grewenig, S., Zimmer, S., Weickert, J.: Rotationally invariant similarity measures for nonlocal image denoising. J. Visual Commun. Image Represent. 22(2), 117–130 (2011)

    Article  Google Scholar 

  13. Chatterjee, P., Milanfar, P.: Patch-based near-optimal image denoising. IEEE Trans. Image Process. 21(4), 1635–1649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lebrun, M., Buades, A., Morel, J.-M.: A nonlocal bayesian image denoising algorithm. SIAM J. Imaging Sci. 6(3), 1665–1688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goossens, B., Luong, Q., Pizurica, A., Philips, W.: An improved non-local denoising algorithm. In: International Workshop on Local and Non-Local Approximation in Image Processing, Aug, pp. 143–156 (2008)

  16. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16(5), 1395–1411 (2007)

    Article  MathSciNet  Google Scholar 

  17. Knaus, C., Zwicker, M.: Dual-domain image denoising. In: 20th IEEE International Conference on Image Processing (ICIP), pp. 440–444 (2013)

  18. Luisier, F., Blu, T., Unser, M.: A new sure approach to image denoising: Interscale orthonormal wavelet thresholding. IEEE Trans. Image Process. 16(3), 593–606 (2007)

    Article  MathSciNet  Google Scholar 

  19. Starck, J., Candes, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  21. Zhang, L., Dong, W., Zhang, D., Shi, G.: Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognit. 43(4), 1531–1549 (2010)

    Article  MATH  Google Scholar 

  22. Zhang, M., Desrosiers, Ch.: Image denoising based on sparse representation and gradient histogram. IET Image Process. 11(09), 54–63 (2016)

    Google Scholar 

  23. Zhang, K., Gao, X., Tao, D., Li, X.: Multi-scale dictionary for single image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1114–1121 (2012)

  24. Yan, R., Shao, L., Liu, Y.: Nonlocal hierarchical dictionary learning using wavelets for image denoising. IEEE Trans. Image Process. 22(12), 4689–4698 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  26. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2392–2399 (2012)

  29. Knaus, C., Zwicker, M.: Progressive image denoising. IEEE Trans. Image Process. 23(7), 3114–3125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  31. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: BM3D image denoising with shape-adaptive principal component analysis. In: Signal Processing with Adaptive Sparse Structured Representations, Apr, pp. 1–6 (2009)

  32. Guo, Q., Zhang, C., Zhang, Y., Liu, H.: An efficient svd-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 26(5), 868–880 (2016)

    Article  Google Scholar 

  33. Honztko, D., Kruli, M.: Accelerating block-matching and 3D filtering method for image denoising on GPUs. J. Real Time Image Proc. 11, 1–15 (2017)

    Google Scholar 

  34. Jung, S., Chyung, Y., Kim, P.W.: Kernel design for real-time denoising implementation in low-resolution images. J. Real Time Image Proc. 9, 1–17 (2017)

    Google Scholar 

  35. Zemliachenko, A., Lukin, V., Djurovi, Ig., Vozel, B.: On potential to improve DCT-based denoising with local threshold. In: 7th Mediterranean Conference on Embedded Computing, June, Budva, Montenegro (2018)

  36. Jain, P., Tyagi, V.: LAPB: locally adaptive patch-based wavelet domain edge-preserving image denoising. Inf. Sci. 294, 164–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kuang, Y., Zhang, L., Yi, Z.: Image denoising via sparse dictionaries constructed by subspace learning. Circuits Syst. Signal Process. 33, 2151–2171 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported jointly by wrnch Inc. and Mitacs Canada.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshanfar, M., Amer, M.A. Efficient cascading of multi-domain image Gaussian noise filters. J Real-Time Image Proc 17, 1183–1195 (2020). https://doi.org/10.1007/s11554-019-00868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-019-00868-9

Keywords

Navigation