Skip to main content
Log in

Fast 3D-HEVC PU size decision algorithm for depth map intra-video coding

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

High-Efficiency Video Coding (HEVC)-based 3D video coding (3D-HEVC) is the most recent standard and last exertion of ISO/IEC MPEG and ITU-T Video Coding Experts Group (VCEG) for 3D video coding using a new data video format called Multi-View Video plus Depth map (MVD). This new standard achieves a high coding improvement. In any case, one of the most critical difficulties in 3D-HEVC is time computational complexity. The depth map intra-prediction is a critical factor in 3D-HEVC intra-coding, in which, the 3D-HEVC uses a highly adaptable Coding Unit (CU) structure with a specific end goal to expand the coding efficiency of all depth map characteristics. However, it results in an enormous Rate Distortion Optimization Cost (RDO-Cost) because of the broad recursive search for the best CU size from \(64\times 64\) down to \(4\times 4\). This computational complexity excludes the 3D-HEVC from true and real-time application. Hence, it is imperative to build up an algorithm to diminish the complexity of the size decision in depth map intra-coding. To determine the previously mentioned issue, this paper proposes an effective 3D-HEVC PU size decision algorithm for depth map intra-video coding based on tensor features and statistical data analyses. The experimental results demonstrate that the proposed model diminishes the complexity of depth map size decision significantly with low rate distortion increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, S.: Special issue on real-time 3D imaging and processing. J. Real Time Image Process. 7(1), 1–2 (2012). https://doi.org/10.1007/s11554-012-0241-1

    Article  Google Scholar 

  2. Tech, G., Chen, Y., Müller, K., Ohm, J., Vetro, A., Wang, Y.: Overview of the multiview and 3D extensions of high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 26(1), 35–49 (2016)

    Article  Google Scholar 

  3. Müller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Merkle, P., Rhee, F.H., Tech, G., Winken, M., Wiegand, T.: 3D high-efficiency video coding for multi-view video and depth data. IEEE Trans. Image Process. 22(9), 3366–3378 (2013)

    Article  MathSciNet  Google Scholar 

  4. Sullivan, G.J., Boyce, J.M., Chen, Y., Ohm, J., Segall, C.A., Vetro, A.: Standardized extensions of high efficiency video coding (HEVC). IEEE J. Select. Top. Signal Process. 7(6), 1001–1016 (2013)

    Article  Google Scholar 

  5. Sullivan, G.J., Ohm, J., Han, W., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  6. Kauff, P., Atzpadin, N., Fehn, C., Müller, M., Schreer, O., Smolic, A., Tanger, R.: Depth map creation and image-based rendering for advanced 3DTV services providing interoperability and scalability. Signal Process. Image Commun. 22(2), 217–234 (2007). (special issue on three-dimensional video and television)

    Article  Google Scholar 

  7. Zhang, Q., Huang, K., Wang, X., Jiang, B., Gan, Y.: Efficient multiview video plus depth coding for 3D-HEVC based on complexity classification of the treeblock. J. Real Time Image Process. https://doi.org/10.1007/s11554-017-0692-5

  8. Fehn, C.: Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV. Vol. 5291, pp. 93–104 (2004)

  9. Chi, G., Jin, X., Dai, Q.: A quad-tree and statistics based fast CU depth decision algorithm for 3D-HEVC, in IEEE International Conference on Multimedia and Expo Workshops (ICMEW), vol. 2014, pp. 1–5 (2014)

  10. Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

  11. Zhang, H., Chan, Y., Fu, C., Tsang, S., Siu, W.: Quadtree decision for depth intra coding in 3D-HEVC by good feature, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1481–1485 (2016)

  12. Peng, K., Chiang, J., Lie, W.: Low complexity depth intra coding combining fast intra mode and fast CU size decision in 3D-HEVC, in IEEE International Conference on Image Processing (ICIP), vol. 2016, pp. 1126–1130 (2016)

  13. Chen, J., Wang, B., Zeng, H., Cai, C., Ma, K.-K.: Sum-of-gradient based fast intra coding in 3D-HEVC for depth map sequence (SOG-FDIC). J. Visual Commun. Image Represent. 48, 329–339 (2017)

    Article  Google Scholar 

  14. Kim, M., Ling, N., Song, L.: Fast single depth intra mode decision for depth map coding in 3D-HEVC, in IEEE International Conference on Multimedia Expo Workshops (ICMEW), vol. 2015, pp. 1–6 (2015)

  15. Chiang, J.-C., Peng, K.-K., Wu, C.-C., Deng, C.-Y., Lie, W.-N.: Fast intra mode decision and fast CU size decision for depth video coding in 3D-HEVC. Signal Process. Image Commun. 71, 13–23 (2019). https://doi.org/10.1016/j.image.2018.10.009

    Article  Google Scholar 

  16. He, G., Hu, J., Li, Y., Yu, W., Yang, Z., Liu, P., Guo, R.: Fast mode decision and PU size decision algorithm for intra depth coding in 3D-HEVC. J. Visual Commun. Image Represent. 49, 303–314 (2017). https://doi.org/10.1016/j.jvcir.2017.09.018

    Article  Google Scholar 

  17. Hamout, H., Elyousfi, A.: Fast texture intra size coding based on big data clustering for 3D-HEVC, in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1728–1732 (2018). https://doi.org/10.1109/ICASSP.2018.8462143

  18. Hamout, H., Elyousfi, A.: Fast depth map intra coding for 3D video compression based tensor feature extraction and data analysis. IEEE Trans. Circuits Sys. Video Tech. (2019). https://doi.org/10.1109/TCSVT.2019.2918770

    Article  Google Scholar 

  19. Yang, M., Lai, C.: A robust automatic merging possibilistic clustering method. IEEE Trans. Fuzzy Syst. 19(1), 26–41 (2011). https://doi.org/10.1109/TCSVT.2019.2918770

    Article  Google Scholar 

  20. Karczewicz, M., Chen, P., Joshi, R.L., Wang, X., Chien, W., Panchal, R., Reznik, Y., Coban, M., Chong, I.S.: A hybrid video coder based on extended macroblock sizes, improved interpolation, and flexible motion representation. IEEE Trans. Circuits Syst. Video Technol. 20(12), 1698–1708 (2010)

    Article  Google Scholar 

  21. Wallendael, G.V., Leuven, S.V., Cock, J.D., Bruls, F., de Walle, R.V.: 3D video compression based on high efficiency video coding. IEEE Trans. Consum. Electron. 58(1), 137–145 (2012)

    Article  Google Scholar 

  22. Sze, V., Budagavi, M., Sullivan, G.J.: High Efficiency Video Coding (HEVC). Springer International Publishing, Berlin (2014). https://doi.org/10.1007/978-3-319-06895-4

  23. Öztekin, A., Erçelebi, E.: An early split and skip algorithm for fast intra cu selection in HEVC. J. Real Time Image Process. 12(2), 273–283 (2016). https://doi.org/10.1007/s11554-015-0534-2

    Article  Google Scholar 

  24. Lainema, J., Bossen, F., Han, W., Min, J., Ugur, K.: Intra coding of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1792–1801 (2012)

    Article  Google Scholar 

  25. Lin, Y.C., Lai, J.C.: Edge density early termination algorithm for HEVC coding tree block, in International Symposium on Computer, Consumer and Control, vol. 2014, pp. 39–42 (2014). https://doi.org/10.1109/IS3C.2014.23

  26. Sole, J., Joshi, R., Nguyen, N., Ji, T., Karczewicz, M., Clare, G., Henry, F., Duenas, A.: Transform coefficient coding in HEVC. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1765–1777 (2012). https://doi.org/10.1109/TCSVT.2012.2223055

    Article  Google Scholar 

  27. Marpe, D., Schwarz, H., Bosse, S., Bross, B., Helle, P., Hinz, T., Kirchhoffer, H., Lakshman, H., Nguyen, T., Oudin, S., Siekmann, M., Suhring, K., Winken, M., Wiegand, T.: Video compression using nested quadtree structures, leaf merging, and improved techniques for motion representation and entropy coding. IEEE Trans. Circuits Syst. Video Technol. 20(12), 1676–1687 (2010). https://doi.org/10.1109/TCSVT.2010.2092615

    Article  Google Scholar 

  28. Shen, L., Zhang, Z., Liu, Z.: Effective CU size decision for HEVC intracoding. IEEE Trans. Image Process. 23(10), 4232–4241 (2014)

    Article  MathSciNet  Google Scholar 

  29. Tech, G., Wegner, K., Chen, Y., Yea, S.: 3D HEVC draft text 6. Joint Collaborative Team on 3D Video Coding Extension Development Document JCT3V-J1001, 10th Meeting, Strasbourg, FR

  30. Hamout, H., Elyousfi, A.: An efficient edge detection algorithm for fast intra-coding for 3D video extension of HEVC. J. Real Time Image Process. https://doi.org/10.1007/s11554-017-0718-z

  31. Chen, Y., Tech, G., Wegner, K., Yea, S.: Test model 11 of 3DHEVC and MV-HEVC. Joint Collaborative Team on 3D Video Coding Extension Development Document JCT3V-K1003, 11th Meeting, Geneva, CH

  32. Jaballah, S., Larabi, M.-C., Tahar, J.B.: Low complexity intra prediction mode decision for 3D-HEVC depth coding. Signal Process. Image Commun. 67, 34–47 (2018). https://doi.org/10.1016/j.image.2018.05.007

    Article  Google Scholar 

  33. Lucas, L.F.R., Wegner, K., Rodrigues, N.M.M., Pagliari, C.L., da Silva, E.A.B., de Faria, S.M.M.: Intra predictive depth map coding using flexible block partitioning. IEEE Trans. Image Process. 24(11), 4055–4068 (2015)

    Article  MathSciNet  Google Scholar 

  34. Chen, Y., Tech, G., Wegner, K., Yea, S.: Test model 10 of 3DHEVC AND MV-HEVC. Joint Collaborative Team on 3D Video Coding Extension Development Document JCT3V-J1003, 10th Meeting, Strasbourg, FR

  35. Saponara, S.: Real-time and low-power processing of 3D direct/inverse discrete cosine transform for low-complexity video codec. J. Real Time Image Process. 7(1), 43–53 (2012). https://doi.org/10.1007/s11554-010-0174-5

    Article  Google Scholar 

  36. Piao, Y., Min, J., Chen, J.: Encoder improvement of unified intra prediction. JCT-VC Document JCTVC-C207

  37. Sanchez, G., Marcon, C., Agostini, L.: Real-time scalable hardware architecture for 3D-HEVC bipartition modes. J. Real Time Image Process. 13(1), 71–83 (2017)

    Article  Google Scholar 

  38. Gu, Z., Zheng, J., Ling, N., Zhang, P.: Fast intra prediction mode selection for intra depth map coding. ISO/IEC JTC1/SC29/WG11, Vienna

  39. Chen, M., Yang, Y., Zhang, Q., Zhao, X., Huang, X., Gan, Y.: Low complexity depth mode decision for HEVC-based 3D video coding. Optik Int. J. Light Electron Opt. 127(11), 4758–4767 (2016)

    Article  Google Scholar 

  40. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973). https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  MATH  Google Scholar 

  41. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  42. Barni, M., Cappellini, V., Mecocci, A.: Comments on “A possibilistic approach to clustering”. IEEE Trans. Fuzzy Syst. 4(3), 393–396 (1996)

    Article  Google Scholar 

  43. Baghaie, A., Yu, Z.: Structure tensor based image interpolation method. CoRR abs/1402.5564. arXiv:1402.5564

  44. Faraklioti, M., Petrou, M.: The Use of Structure Tensors in the Analysis of Seismic Data. (Springer, Berlin, 2005), pp. 47–88. https://doi.org/10.1007/3-540-26493-0_3

  45. Hamout, H., Elyousfi, A.: Low complexity intra mode decision algorithm for 3D-HEVC, in 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1475–1479 (2017). https://doi.org/10.23919/EUSIPCO.2017.8081454

  46. Müller, K., Vetro, A.: Common test conditions of 3DV core experiments, Joint Collaborative Team on 3D Video Coding Extension Development Document JCT3V-G1100, 7th Meeting, San Jos, US

  47. Joint Collaborative Team on 3D video coding (JCT-3V) HTM 16.2 Reference Software: [online]. https://hevc.hhi.fraunhofer.de/trac/3d-hevc/browser/3DVCSoftware/tags/HTM-16.2 (2016)

  48. Tanimoto, M., Fujii, T., Suzuki, K.: View synthesis algorithm in view synthesis reference software 2.0 (VSRS2.0). Tech. Rep., ISO/IEC JTC1/SC29/WG11 M16090, Lausanne, Switzerland (2008)

  49. Bjntegaard, G.: Calculation of average PSNR differences between RD curves. In: 13th VCEG Meeting, Document VCEGM33, Austin (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Hamout.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamout, H., Elyousfi, A. Fast 3D-HEVC PU size decision algorithm for depth map intra-video coding. J Real-Time Image Proc 17, 1285–1299 (2020). https://doi.org/10.1007/s11554-019-00890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-019-00890-x

Keywords

Navigation