Skip to main content
Log in

`A real-time classification model based on joint sparse-collaborative representation

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Due to the low computational complexity, the two-phase test sample representation method shows outstanding advantages in the field of real-time face recognition. However, its first phase does not fully consider the imbalance of the determined K-nearest training samples. This defect is not well reflected and will seriously affect the recognition accuracy of the second phase. In this paper, we explore the above issues and propose to incorporate the unselected training samples into the modeling process. The proposed method not only allows the unselected samples to perform the final representation but also makes the selected nearest training samples play a more significant role than the unselected ones in classification. It is efficiently solved with an analytical solution. The rationales and probability interpretation of the proposed method are presented to further guarantee its rationality and effectiveness. Extensive experiments on diverse face databases are conducted to demonstrate the superior recognition performance in comparison with other competing classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lan, R., Zhou, Y., Liu, Z., Luo, X.: Prior knowledge-based probabilistic collaborative representation for visual recognition. IEEE Trans. Cybern. 50(4), 1498–1508 (2020)

    Article  Google Scholar 

  2. Jin, J., Li, Y., Chen, C.L.P.: Pattern classification with corrupted labeling via robust broad learning system. IEEE Trans. Knowl. Data Eng. 1–1 (2021)

  3. Li, Y., Jin, J., Zhao, L., Wu, H., Sun, L., Chen, C.L.P.: A neighborhood prior constrained collaborative representation for classification. Int. J. Wavel. Multiresolut. Inf. Process. 19(2), 2050073:1–2050073:22 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Jin, J., Li, Y., Yang, T., Zhao, L., Duan, J., Chen, C.L.P.: Discriminative group-sparsity constrained broad learning system for visual recognition. Inf. Sci. 1–1 (2021)

  5. Li, Y., Zhang, L., Qian, T.: 2D partial unwinding—a novel non-linear phase decomposition of images. IEEE Trans. Image Process. 28(10), 4762–4773 (2019)

    Article  MathSciNet  Google Scholar 

  6. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  7. Feng, Q., Yuan, C., Pan, J.S., Yang, J.F., Chou, Y.T., Zhou, Y., Li, W.: Superimposed sparse parameter classifiers for face recognition. IEEE Trans. Cybern. 47(2), 378–390 (2017)

    Article  Google Scholar 

  8. Tu, X., Shen, X., Fu, P., Wang, T., Ji, Z.: Discriminant sub-dictionary learning with adaptive multiscale superpixel representation for hyperspectral image classification. Neurocomputing 409 (2020)

  9. Deng, W., Hu, J., Guo, J.: In defense of sparsity based face recognition. In: IEEE Conference on Computer Vision & Pattern Recognition (2013)

  10. Fan, Z., Ni, M., Zhu, Q., Liu, E.: Weighted sparse representation for face recognition. Neurocomputing 151, 304–309 (2015)

    Article  Google Scholar 

  11. Shu, T., Zhang, B., Tang, Y.Y.: Sparse supervised representation-based classifier for uncontrolled and imbalanced classification. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2847–2856 (2020)

    Article  MathSciNet  Google Scholar 

  12. Gao, S., Tsang, I.W., Chia, L.: Sparse representation with kernels. IEEE Trans. Image Process. 22(2), 423–434 (2013)

    Article  MathSciNet  Google Scholar 

  13. Xu, Y., Zhong, Z., Yang, J., You, J., Zhang, D.: A new discriminative sparse representation method for robust face recognition via \(l_{2}\) regularization. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2233–2242 (2017)

    Article  MathSciNet  Google Scholar 

  14. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: Computer vision (ICCV), 2011 IEEE international conference on, pp. 471–478. IEEE (2011)

  15. Yuan, H., Li, X., Xu, F., Wang, Y., Lai, L.L., Tang, Y.Y.: A collaborative-competitive representation based classifier model. Neurocomputing 275, 627–635 (2018)

    Article  Google Scholar 

  16. Peng, X., Zhang, L., Yi, Z., Tan, K.K.: Learning locality-constrained collaborative representation for robust face recognition. Pattern Recognit. 47(9), 2794–2806 (2014)

    Article  Google Scholar 

  17. Jin, J., Li, Y., Sun, L., Miao, J., Chen, C.L.P.: A new local knowledge-based collaborative representation for image recognition. IEEE Access 8, 81069–81079 (2020)

    Article  Google Scholar 

  18. Cai, S., Zhang, L., Zuo, W., Feng, X.: A probabilistic collaborative representation based approach for pattern classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2950–2959 (2016)

  19. Xu, Y., Zhang, D., Yang, J., Yang, J.Y.: A two-phase test sample sparse representation method for use with face recognition. IEEE Trans. Circuits Syst. Video Technol. 21(9), 1255–1262 (2011)

    Article  MathSciNet  Google Scholar 

  20. Gou, J., Wang, L., Hou, B., Lv, J., Yuan, Y., Mao, Q.: Two-phase probabilistic collaborative representation-based classification. Expert Syst. Appl. 133, 9–20 (2019)

    Article  Google Scholar 

  21. Xu, Y., Zhu, X., Li, Z., Liu, G., Lu, Y., Liu, H.: Using the original and “symmetrical face” training samples to perform representation based two-step face recognition. Pattern Recognit. 46(4), 1151–1158 (2013)

    Article  Google Scholar 

  22. Liu, Z., Pu, J., Xu, M., Qiu, Y.: Face recognition via weighted two phase test sample sparse representation. Neural Process. Lett. 41(1), 43–53 (2015)

    Article  Google Scholar 

  23. Gou, J., Xu, Y., Zhang, D., Mao, Q., Du, L., Zhan, Y.: Two-phase linear reconstruction measure-based classification for face recognition. Inf. Sci. 433, 17–36 (2018)

    Article  MathSciNet  Google Scholar 

  24. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Applications of Computer Vision, 1994. Proceedings of the Second IEEE Workshop on. IEEE, pp. 138–142 (1994)

  25. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  26. Martinez, A., Benavente, R.: The AR face database. Technical report (1998)

  27. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  28. Li, Y., Jin, J., Wu, H., Sun, L., Chen, C.L.P.: Multi-resolution collaborative representation for face recognition. In: International Conference on System, Man and Cybernetics (2020)

  29. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  30. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  31. He, R., Zheng, W.S., Hu, B.G.: Maximum correntropy criterion for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1561–1576 (2011)

    Article  Google Scholar 

  32. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)

    Article  Google Scholar 

  33. Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the National Natural Science Foundation of China under Grant 62106233 and 62106068, in part by the Key Research Program of Higher Education in Henan under Grant 21A520009, in part by the 2020 Science and Technology Research Project of Henan Province under Grant 202102210122, and in part by the Grant 13501050072, 2020BSJJ027, and 24400004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jin, J. & Chen, C.L.P. `A real-time classification model based on joint sparse-collaborative representation. J Real-Time Image Proc 18, 1837–1849 (2021). https://doi.org/10.1007/s11554-021-01167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01167-y

Keywords

Navigation