Skip to main content
Log in

A counterexample to the dominating set conjecture

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The metric polytope met n is the polyhedron associated with all semimetrics on n nodes and defined by the triangle inequalities x ij  −  x ik  −  x jk  ≤  0 and x ij  +  x ik  +  x jk  ≤  2 for all triples i, j, k of {1,..., n}. In 1992 Monique Laurent and Svatopluk Poljak conjectured that every fractional vertex of the metric polytope is adjacent to some integral vertex. The conjecture holds for n  ≤  8 and, in particular, for the 1,550,825,600 vertices of met8. While the overwhelming majority of the known vertices of met9 satisfy the conjecture, we exhibit a fractional vertex not adjacent to any integral vertex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avis, D.: lrs home page. http://cgm.cs.mcgill.ca/~ avis/C/lrs.html

  2. Deza A.: Metric polytope and metric cone home page. http://www.cas.mcmaster.ca/~ deza/metric.html

  3. Deza A., Deza M., Fukuda K. (1996) On skeletons, diameters and volumes of metric polyhedra. In: Deza M., Euler R., Manoussakis Y. (eds) Lecture Notes in Computer Science, vol 1120. Springer, Berlin Heidelberg New York, pp. 112–128

    Google Scholar 

  4. Deza A., Fukuda K., Mizutani T., Vo C. In: Akiyama, J., Kano, M. (eds.) On the face-lattice of the metric polytope. Lecture Notes in Computer Science, vol. 2866. Springer, Berlin Heidelberg New York, pp. 118–128 (2003)

  5. Deza A., Fukuda K., Pasechnik D., Sato M. (2001) On the skeleton of the metric polytope. In: Akiyama J., Kano M., Urabe M. (eds) Lecture Notes in Computer Science, vol 2098. Springer, Berlin Heidelberg New York, pp. 125–136

    Google Scholar 

  6. Deza A., Goldengorin B., Pasechnik D. (2006) The isometries of the cut, metric and hypermetric cones. J. Algebr. Comb. 23, 197–203

    Article  MATH  MathSciNet  Google Scholar 

  7. Deza M., Grishukhin V., Laurent M. (1991) The symmetries of the cut polytope and of some relatives. In: Gritzmann P., Sturmfels B. (eds). Applied Geometry and Discrete Mathematics, the “Victor Klee Festschrift” DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol 4, pp. 205–220

  8. Deza M., Laurent M. (1997) Geometry of cuts and metrics Algorithms and Combinatorics, vol 15. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Fukuda K. cdd and cddplus home page. http://www.ifor.math.ethz.ch/~ fukuda/cdd_home/cdd.html

  10. Laurent M. (1996) Graphic vertices of the metric polytope. Discret. Math. 151, 131–153

    Article  MATH  MathSciNet  Google Scholar 

  11. Laurent M., Poljak S. (1992) The metric polytope. In: Balas E., Cornuejols G., Kannan R. (eds) Integer Programming and Combinatorial Optimization, pp. 247–286

  12. Laurent M., Poljak S. (1996) One-third integrality in the metric polytope. Math. Program. 71, 29–50

    MathSciNet  Google Scholar 

  13. Poljak, S., Tuza, Z.: Maximum cuts and large bipartite subgraphs. In: Cook, W., Lovasz, L., Seymour, P. (eds.) DIMACS Series, vol. 20, pp. 181–244 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Deza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deza, A., Indik, G. A counterexample to the dominating set conjecture. Optimization Letters 1, 163–169 (2007). https://doi.org/10.1007/s11590-006-0001-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-006-0001-x

Keywords

Navigation