Skip to main content
Log in

New formulations of the multiple sequence alignment problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A well known formulation of the multiple sequence alignment (MSA) problem is the maximum weight trace (MWT), a 0–1 linear programming problem. In this paper, we propose a new integer quadratic programming formulation of the MSA. The number of constraints and variables in the problem are only of the order of kL 2, where, k is the number of sequences and L is the total length of the sequences, that is, \({L= \sum_{i=1}^{k}l_{i}}\) , where l i is the length of sequence i. Based on this formulation we introduce an equivalent linear constrained 0–1 quadratic programming problem. We also propose a 0–1 linear programming formulation of the MWT problem, with polynomially many constraints. Our formulation provides the first direct compact formulation that ensures that the critical circuit inequalities (which are exponentially many) are all met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams W.P., Sherali H.D.: A tight linearization and an algorithm for 0–1 quadratic programming problems. Manage Sci 32(10), 1274–1290 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beasley, J.E.: Obtaining test problems via internet. J. Global Optim. 8, 429–433, http://people.brunel.ac.uk/~mastjjb/jeb/info.html (1996)

  3. Benson H.P.: Separable concave minimization via partial outer approximation and branch and bound. Oper. Res. Lett. 9, 389–394 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Billionnet A., Elloumi S.: Using a mixed integer quadratic programming solver for unconstrained quadratic 0–1 problem. Math. Program. 109(1, Ser.A), 55–68 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caprara A.: Constrained 0–1 quadratic programming: basic approaches and extensions. Eur. J. Oper. Res. 187, 494–1503 (2008)

    Article  MathSciNet  Google Scholar 

  6. Carr R.D., Lancia G.: Compact vs exponential-size LP relaxations. Oper. Res. Lett. 30, 57–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Greenberg, H.J.: Integer quadratic programming models in computational biology. Operations Research Proceedings, vol. 2006, pp. 83–95. Springer, Berlin (2007)

  8. Kalantari B., Rosen J.B.: Algorithm for global minimization of linearly constrained concave quadratic functions. Math. Oper. Res. 12, 544–561 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kececioglu, J.D.: Exact and approximation algorithms for DNA sequence reconstruction. PhD thesis, University of Arizona (1991)

  10. Kececioglu, J.: The maximum weight trace problem in multiple sequence alignment. In: Proceedings of the 4th symposium on combinatorial pattern matching, pp. 106–119 (1993)

  11. Kececioglu J.D., Lenhof H.-P., Mehlhorn K., Mutzel P., Reinert K., Vingron M.: A polyhedral approach to sequence alignment problems. Discret. Appl. Math. 104, 143–186 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Korostensky C., Gonnet G.H.: Using traveling salesman problem algorithms for evolutionary tree construction. Bioinformatics 16(7), 619–627 (2000)

    Article  Google Scholar 

  13. Le Thi H.A., Pham Dinh T.: The DC (Difference of Convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals Oper. Res. 133, 23–46 (2005)

    Article  MATH  Google Scholar 

  14. Le Thi H.A., Pham Dinh T.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Global Optim. 11(3), 253–285 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Le Thi H.A., Pham Dinh T.: A continuous approach for large-scale constrained quadratic zero-one programming (In honor of Professor ELSTER, Founder of the Journal Optimization). Optimization 50(1–2), 93–120 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Le Thi, H.A., Belghiti, T., T.M., Pham Dinh T.: Mutiple alignment of sequences by a continuous optimisation approach on DC Programing and DCA. In:Proceedings of the international conference on bioinformatics & computational biology, BIOCOMP’09 (2009)

  17. Lenhof H-P., Retnert K., Vingron M.: A polyhedral approach to RNA sequence structure alignment. J. Comput. Biol. 5(3), 517–530 (1998)

    Article  Google Scholar 

  18. Notredame C.: Recent progresses in multiple sequence alignment: a survey. Pharmacogenomics 3(1), 131–144 (2002)

    Article  Google Scholar 

  19. Pardalos P.M., Rodgers G.P.: Computational aspects of a branch and bound algorithm for quadratic zero–one programming. Computing 45, 131–144 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c. programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997) (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday)

  21. Pham Dinh, T., Nguyen Canh, N., Le Thi, H.A.: An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J. Global Optim. (2010) doi:10.1007/s10898-009-9507-y

  22. Phillips A.T., Rosen J.B.: A parallel algorithm for partially separable non-convex global minimization: linear constraints. Annals Oper. Res. 25, 101–118 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Prestwich, S., Higgins, D., O’Sullivan, O.: Pseudo-Boolean multiple sequence alignment, Technical report, TR-03-2003, http://www.4c.ucc.ie/web/techreps.jsp, Cork Constraint Computation Centre, University College, Cork, Ireland (2003)

  24. Rajasekaran S., Nick H., Pardalos P.M., Sahni S., Shaw G.: Efficient algorithms for local alignment search. J. Comb. Optim. 5(1), 117–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rajasekaran S., Hu Y., Luo J., Nick H., Pardalos P.M., Sahni S., Shaw G.: Efficient algorithms for similarity alignment search. J. Comb. Optim. 5(1), 117–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Reinert, K., Lenhof, H., Mutzel, P., Mehlhorn, K., Kececioglu, J.D.: A branch-and-cut algorithm for multiple sequence alignment. RECOMB, pp. 241–250 (1997)

  27. Thai Quynh P., Le Thi H.A., Pham Dinh T.: On the global solution of linearly constrained indefinite quadratic minimization problems by decomposition branch and bound method. RAIRO Rech. Opér 30(1), 31–49 (1996)

    MATH  Google Scholar 

  28. Thompson J., Plewniak F., Poch O.: BAliBASE: a benchmark alignments database for the evaluation of multiple sequence alignment programs. Bioinformatics 15, 87–88 (1999)

    Article  Google Scholar 

  29. Vavasis S.A.: Approximation algorithms for indefinite quadratic programming. Math. Program. 57, 279–311 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vavasis S.A.: Nonlinear optimization, complexity issues. Oxford University Press, New York (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai An Le Thi.

Additional information

Part of this work was completed during the visit of T. S. Arthanari at the Laboratory of Theoretical and Applied Computer Science, UFR MIM, Paul Verlaine University-Metz, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arthanari, T.S., Le Thi, H.A. New formulations of the multiple sequence alignment problem. Optim Lett 5, 27–40 (2011). https://doi.org/10.1007/s11590-010-0188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0188-8

Keywords

Navigation