Skip to main content
Log in

An \({O(\sqrt{n}L)}\) iteration primal-dual second-order corrector algorithm for linear programming

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a primal-dual second-order corrector interior point algorithm for linear programming problems. At each iteration, the method computes a corrector direction in addition to the Ai–Zhang direction [Ai and Zhang in SIAM J Optim 16:400–417 (2005)], in an attempt to improve performance. The corrector is multiplied by the square of the step-size in the expression of the new iterate. We prove that the use of the corrector step does not cause any loss in the worst-case complexity of the algorithm. To our best knowledge, this is the first wide neighborhood second-order corrector algorithm enjoyed the low iteration bound of \({O(\sqrt{n}L)}\), the same as the best known complexity results for interior point methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai W.: Neighborhood-following algorithms for linear programming. Sci. China Ser. A. 47, 812–820 (2004)

    Article  MathSciNet  Google Scholar 

  2. Ai W., Zhang S.: An \({O(\sqrt{n}L)}\) iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone LCP. SIAM J. Optim. 16, 400–417 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cartis C.: Some disadvantages of a Mehrotra-tpye primal-dual corrector interior point algorithm for linear programming. Appl. Numer. Math. 59, 1110–1119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cartis, C.: On the convergence of a primal-dual second-order corrector interior point algorithm for linear programming. Technical report, Numerical Analysis Group, Computing Laboratory, Oxford University. April 2005. http://www.optimization-online.org/DB_HTML/2005/03/1097.html

  5. Floudas C.A., Pardalos P.M.: Encyclopedia of optimization, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  6. Freund R.M., Mizuno S.: Interior point methods: current status and future directions. In: Frenk, J.B.G., Roos, C., Terlaky, T., Zhang, S. (eds) High Performance Optimization, pp. 441–446. Kluwer, Dordrecht (2000)

    Google Scholar 

  7. Gondzio J.: Multiple centrality corrections in a primal-dual method for linear programming. Comput. Optim. Appl. 6, 137–156 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Gonzaga C.C.: Path-following methods for linear programming. SIAM Rev. 34, 167–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kojima M., Megiddo N., Mizuno S.: A primal-dual infeasible-interior-point algorithm for linear programming. Math. Program. 61, 263–280 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kojima M., Mizuno S., Yoshise A.: A primal-dual interior point algorithm for linear programming. In: Megiddo, N. (ed.) Progress in Mathematical Programming: Interior Point and Related Methods, pp. 29–47. Springer, New York (1989)

    Google Scholar 

  11. Mehrotra S.: On finding a vertex solution using interior point methods. Linear Algebra Appl. 152, 233–253 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mehrotra S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nematollahi E., Terlaky T.: A simpler and tighter redundant Klee-Minty construction. Optim. Lett. 2, 403–414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. NETLIB: A Repository of Linear Programming Test Problems. http://www.netlib.org/

  15. Nocedal J., Wright S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  16. Pardalos P.M., Wolkowicz H.: Topics in Semidefinite and Interior-Point Methods. American Math Society, Providence (1998)

    MATH  Google Scholar 

  17. Potra F.A., Wright S.J.: Interior-point methods. J. Comput. Appl. Math. 124, 281–302 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Roos C., Terlaky T., Vial J.-Ph.: Theory and Algorithms for Linear Optimization: An Interior Point Approach. Wiley, Chichester (1997)

    MATH  Google Scholar 

  19. Salahi M., Mahdavi-Amiri N.: Polynomial time second order Mehrotra-type predictor–corrector algorithms. Appl. Math. Comput. 183, 646–658 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Salahi M., Peng J., Terlaky T.: On Mehrotra-type predictor–corrector algorithms. SIAM J. Optim. 18, 1377–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Salahi M., Terlaky T.: Postponing the choice of the barrier parameter in Mehrotra-type predictor–corrector algorithms. Eur. J. Oper. Res. 182, 502–513 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wright S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  23. Ye Y., Todd M.J., Mizuno S.: An \({O(\sqrt{n}L)}\)-iteration homogeneous and self-dual linear programming algorithm. Math. Oper. Res. 19, 53–67 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang Y., Zhang D.T.: On polynomiality of the Mehrotra-type predictor–corrector interior-point algorithms. Math. Program. 68, 303–318 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Liu, H. & Cong, W. An \({O(\sqrt{n}L)}\) iteration primal-dual second-order corrector algorithm for linear programming. Optim Lett 5, 729–743 (2011). https://doi.org/10.1007/s11590-010-0242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0242-6

Keywords

Navigation