Skip to main content
Log in

Recoverable robust knapsacks: the discrete scenario case

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The knapsack problem is one of the basic problems in combinatorial optimization. In real-world applications it is often part of a more complex problem. Examples are machine capacities in production planning or bandwidth restrictions in telecommunication network design. Due to unpredictable future settings or erroneous data, parameters of such a subproblem are subject to uncertainties. In high risk situations a robust approach should be chosen to deal with these uncertainties. Unfortunately, classical robust optimization outputs solutions with little profit by prohibiting any adaption of the solution when the actual realization of the uncertain parameters is known. This ignores the fact that in most settings minor changes to a previously determined solution are possible. To overcome these drawbacks we allow a limited recovery of a previously fixed item set as soon as the data are known by deleting at most k items and adding up to new items. We consider the complexity status of this recoverable robust knapsack problem and extend the classical concept of cover inequalities to obtain stronger polyhedral descriptions. Finally, we present two extensive computational studies to investigate the influence of parameters k and to the objective and evaluate the effectiveness of our new class of valid inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achterberg T.: SCIP: solving constraint integer programs. Math. Prog. Comp 1(1), 1–42 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of some combinatorial optimization problems: a survey. http://hal.archives-ouvertes.fr/docs/00/15/86/52/PDF/AN7LAMSADE_1-32.pdf (2007)

  3. Balas E.: Facets of the knapsack polytope. Math. Prog 8, 146–164 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. of the OR Society 41: 1069–1072. http://people.brunel.ac.uk/~mastjjb/jeb/ (1990)

  5. Bellman R.: Notes on the theory of dynamic programming iv—maximization over discrete sets. Naval Res. Logist. Quart. 3, 67–70 (1956)

    Article  MathSciNet  Google Scholar 

  6. Bertimas D., Sim M.: Robust discrete optimization and network flows. Math. Prog. Ser. B 98, 49–71 (2003)

    Article  Google Scholar 

  7. Bertimas D., Sim M.: The price of robustness. Oper. Res 52, 35–53 (2004)

    Article  MathSciNet  Google Scholar 

  8. Büsing, C., Koster, A.M.C.A., Kutschka M.: Recoverable robust knapsacks: the discrete scenario case. Technical Report 018-2010, TU Berlin. http://www.math.tu-berlin.de/coga/publications/techreports/2010/ (2010)

  9. Crowder H., Johnson E., Padberg M.: Large-scale zero-one linear programming problems. Oper. Res. 31, 803–834 (1983)

    Article  MATH  Google Scholar 

  10. Cicerone S., D’Angelo G.D., Di Stefano G., Frigioni D., Navarra A., Schachtebeck M., Schöbel A.: Recoverable robustness in shunting and timetabling Robust and Online Large-Scale Optimization, vol. 5868 of LNCS, 28–60. Springer, Berlin (2009)

    Google Scholar 

  11. Fischetti M., Lodi A., Salvagnin D.: Just MIP it!. Ann. Inf. Syst. 10, 39–70 (2009)

    Article  Google Scholar 

  12. Gabrel V., Minoux M.: A scheme for exact separation of extended cover inequalities and application to multidimensional knapsack problems. OR Lett. 30, 252–264 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Iida H.: A note on the max- min 0-1 knapsack problem. J. Comb. Opt. 3, 89–94 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kalai, R., Vanderpooten, D.: Lexicographic α-robust knapsack problems: complexity results. IEEE International Conference on Services Systems and Service Managment 1103–1107 (2006)

  15. Kaparis K., Letchford A.: Separation algorithms for 0-1 knapsack polytopes. Math. Prog. 124(1-2), 69–91 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Computations. 85–103 (1972)

  17. Kellerer H., Pferschy U., Pisinger D.: Knapsack Problems. Springer, (2004)

  18. Klopfenstein, O., Nace, D.: Valid inequalities for a robust knapsack polyhedron—Application to the robust bandwidth packing problem. Networks Special Issue, Network Optimization (INOC 2009) (to appear)

  19. Liebchen C., Lübbecke M.E., Möhring R.H., Stiller S.: The concept of recoverable robustness, linear programming recovery, and railway applications Robust and Online Large-Scale Optimization, vol 5868 of LNCS, 1–27. Springer, Berlin (2009)

    Google Scholar 

  20. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. Wiley (1990)

  21. Weismantel R.: On the 0-1 knapsack polytope. Math. Prog. 77, 49–68 (1997)

    MATH  MathSciNet  Google Scholar 

  22. Wolsey L.: Faces for a linear inequality in 0-1 variables. Math. Prog. 8, 165–178 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yu G.: On the max- min 0-1 knapsack problem with robust optimization applications. Oper. Res. 44, 407–415 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Büsing.

Additional information

This work was supported by the Federal Ministry of Education and Research (BMBF grant 03MS616A, project ROBUKOM - Robust Communication Networks, www.robukom.de), and the DFG Research Center Matheon Mathematics for key technologies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büsing, C., Koster, A.M.C.A. & Kutschka, M. Recoverable robust knapsacks: the discrete scenario case. Optim Lett 5, 379–392 (2011). https://doi.org/10.1007/s11590-011-0307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0307-1

Keywords

Navigation